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Chapter 1

Overview

The program calculates bounds for real and complex polynomial zeros according to the
results found in the following papers (total 25 estimates):

1.1

Dehmer M. (2006) On the location of zeros of complex polynomials. Journal of
Inequalities in Pure and Applied Mathematics, Vol 7 (1)

Dehmer M., Mowshowitz A. (2011) Bounds on the moduli of polynomial zeros.
Applied Mathematics and Computation, accepted, 218: 4128-4137.

Joyal A., Labelle G., Rahman Q.I. (1967) On the location of polynomials. Cana-
dian Mathematical Bulletin 10: 53-63.

Jain V.K. (1986) On the zeros of polynomials II. Journal of Mathematical and
Physical Sciences 20: 259-267.

Kalantari B. (2005) An infinite family of bounds on zeros of analytic functions and
relationship to Smale’s bound. Mathematics of Computation 74: 841-852.

Kojima J. (1914) On a theorem of Hadamard and its applications. Tohoku Math-
ematical Journal 5: 54-60.

Marden M. (1966) Geometry of polynomials. Mathematical Surveys of the Amer-
ican Mathematical Society, Vol. 3. Rhode Island, USA.

Polynomials

The polynomials, for which bounds are computed, are generated at random using the
following distributions:

Gaussian.
Poisson.

Geometric.



e Uniform.

e Uniform in [—1,+1].

The following special class polynomials can be generated:

e Real Lacunary-1: 2" — 2" ! —ay * 2 + ag, a1, ag > 0, with Gaussian coefficients.
e Real Lacunary-2: 2" — aq * z 4+ ag, a1, ag > 0, with Gaussian coefficients.

L _a1%2z4ag, a1 *ag! = 0, with Gaussian coefficients.

e Complex Lacunary-1: 2™ —2z"~
e Complex Lacunary-2: z" — aj * z + ag, a1 * ag! = 0, with Gaussian coefficients.

e Complex Constrained-1: |a;| < 1, with Gaussian coefficients.

e Complex Constrained-2: |a;| < 1, a, - arbitrary, with Gaussian coefficients.

e Complex Constrained-3: |a;| < 1, an,a,—1 - arbitrary, with Gaussian coefficients.

e Complex Constrained-4: |a;|/|an| < 1, with Gaussian coefficients.

e Complex Constrained Multiple: f = fi * fa,|cn;| > |ci|, where f; and fo are
complex polynomials with Gaussian coeflicients.

e Complex Multiple: f = fi * fo, where f; and fo are complex polynomials with
Gaussian coefficients.
1.2 System Requirements

Hardware: Intel Pentium III or AMD Athlon or higher, RAM 512, 5MB HDD, keyboard,
mouse.

Software: OS Microsoft Windows XP/Vista/7. Microsoft .NET Framework 3.5 or higher.
1.3 Aknowledgements

The author is thankful to Prof. Dr. Matthias Dehmerl| for his helpful comments on the
program.

1.4 Contacts

For bugs and issues, please contact Yury Tsoy: yurytsoy@gmail.com

"http://www.dehmer.org


http://www.dehmer.org

Chapter 2

Usage of the Program

2.1 Main Window

Random Polynomial Settings
Random Polynomial: | Random polynomial (Gaussian)
Order

Random polynomial setup region

Button for the Batch mode run.

Metrics parameter > Pyave: 200 1=

General bounds @]

Bounds to compute Specialbounds  [T]
Lacunary bounds 1 7] Button for the Single mode run.

Lacunary bounds 2 []
Bounds Data

Calculations results

Figure 2.1: Main Window

2.2 Computing the polynomial bounds

There are two modes for computing the zero bounds:



1. The first mode concerns processing of a single random polynomial with possibility
for selection of the distribution for polynomial coefficients.

2. Batch mode, which involves calculation of all available bounds for specified number
of random polynomials.

See more detailed descriptions of each mode below.

2.3 Setting up random polynomial coefficients

Before description of the two modes mentioned above let’s consider a step, which is
obligatory for both modes. This step considers selection of parameters for random
polynomial (or set of polynomials for the Batch mode). Region for setting polynomial
parameters is shown by fig.

Random Polynomial Settings
Random Polynomial: lHandom polynomial (Gaussian) 'l-.
Order 10

Order of a polynomial—] —— Polynomial class

Complex Polynomial [V]

/ | Generate
7 N

Check box for complex polynomials Button for generation of polynomial

Figure 2.2: Polynomial setup.

For a random polynomial order and distribution for polynomial coefficients can be
set up. The following distributions are supported:

o Gaussian.
e Poisson.

Geometric.

e Uniform.
e Uniform on interval [—1, 1].

For all distributions except of the last one, there is a possibility to set parameters,
like mean, std. deviation etc. See sections describing single and batch modes.

Note: Since different bounds require complex or real polynomials, then both types of
polynomials would be generated, but if ” Complex Polynomial” is checked then a complex
polynomial will have non-zero imaginary part and real polynomial will have only real
parts of coefficients, while otherwise complex and real polynomials would in fact be the
same.



2.3.1 Computing zero bounds in the Single Mode

In this mode the user should select random polynomial parameters and a special param-
eter p, which is required for several bounds, and then all available bounds are calculated
for this random polynomial.

Note: Calculation results substitute current contents of the text box, so be sure that
you’ve saved all valuable data before starting calculations.

The calculation of polynomials zero bounds the Single Mode consists of the following
steps:

1. Set up random polynomial parameters (order, distribution and type of coefficients).

[\

. Select p parameter, required for some bounds.
3. Press the ”Compute Bounds” button.
4. Set up parameters for the selection random distribution.

The result is shown in text box in a lower part of the main window and is au-
tomatically saved in a log-file, which is placed in the program directory. The name
of log-file consists of current date, time and order of polynomial. For example file
"10.07.2011_22.41.09_5.1log" was created on July, 10th at 22 : 41 : 09 for 5th order
polynomial.

Log-file contents include the following sections:

e polynomial order.

e selected distribution.

e generated complex and real polynomial coefficients in the order cg,cq,...,cy,.

e value of the p parameter.

e sharpest and widest bounds for generated polynomial with their values.

e list of all bounds’ values sorted by rank in ascending order (from best to worst).

Note: Some bounds require obligatory conditions to be satisfied (like existence of
two positive roots for a special polynomial). If these conditions check is failed then the
bounds are considered infinite, which affects the results.

2.3.2 Computing zero bounds in the Batch Mode

In this mode the user should select random polynomial parameters and a special param-
eter p, which is required for several bounds, and then all available bounds are calculated
for this random polynomial for a specified number of runs. At each run a new random
polynomial is generated.



Overall results are calculated via computation of sum rank for all bounds so that the
bounds with the lowest sum rank happened to be the sharpest, while the bounds with
the largest sum rank is the widest.

Note: Calculation results substitute current contents of the text box, so be sure that
you’ve saved all valuable data before starting calculations.

The calculation of polynomials zero bounds for the Batch Mode consists of the fol-
lowing steps:

[a—

. Set up random polynomial parameters (order, distribution and type of coefficients).

[\)

. Select p parameter, required for some bounds.

3. Press the “Batch Run” button.

4. Specify number of runs.

5. Set up parameters for the selection random distribution.

The overall results are shown in text box in a lower part of the main window and are
automatically saved in a log-file, which is saved in a subdirectory of the program directory
along with log-files for each single polynomial zero bounds, which were generated during
a batch run. The name of subdirectory consists of current date, time and order of
polynomial. For example subdirectory "10_10.07.2011_21.39.15" was created on July,
10th at 21 : 39 : 15 for 10th order polynomial.

Log-file for overall results is always named "_total.log" and includes the following
sections:

polynomial order.

e selected distribution.

e number of independent runs.

e value of p parameter.

e sharpest and widest bounds for generated polynomial with their sum ranks.
e list of all bounds sorted in ascending order by sum ranks.

Note: Some bounds require obligatory conditions to be satisfied (like existence of
two positive roots for a special polynomial). If these conditions check is failed then the
bounds are considered infinite, which affects the results.



Chapter 3

Zero bounds

The correspondence between zero bounds as they are referred in the log-files and the
theorems is the following{ﬂ

3.1 Cauchy, Th. (1)
Theorem 1 (Cauchy [8]) Let
f(2)=anz" +an 12" P+ Fag,a, #0,k=0,1,...,n
be a complex polynomial. All zeros of f(z) lie in the closed disk |z| < 1+ M, where

_ lasl
©0<j<n=1 |ag|’

3.2 Joyal, Th. (2)

Theorem 2 (Joyal [4]) Forp,q>1 and % + % =1, all zeros of

f(z):an2n+an71zn—1+...—|—a0,an#O,aiEC’i:()’l,...,n

2] < {;{1+\/1+4M£H , (3.1)

lie in

Q=

where

Gn—10n—k — Gnlp—k—1

2
an

M, = (zn: p>p, a_1 =0. (3.2)

k=1

1K (0,8) denotes a dish in the complex plane with center at 0 and radius 6.



3.3 Mohammad, Th. (3)

Theorem 3 (Mohammad [3]) Let

f(z) = apz" + an—lzn_l

be a complex polynomial. All zeros f(z) lie in

|a|
’akJrl’

]z\§2max( ), 0<k<n-1

3.4 Kojima, Th. (4)

Theorem 4 (Kojima [6]) Let

f(Z)Zan2”+an71zn_1+---+ao,an#O,k::O,l,...

be a complex polynomial. All zeros f(z) lie in

lao| ., la|
la1]” " |ag1]

|z]§max< >, 1<k<n-1.

3.5 Jain, Th. (5)

Theorem 5 (Jain [3]) Let

f(2) =anz"+an 12" 14+ Fag,a, #0, k=0,1,...

be a complex polynomial. All zeros f(z) lie in

max <|‘ln—1|7 |an—2|7 lan—3| R ,n—lao‘)
|Z’ < lan] lan—1] lan—2] lai]
- In(2)

3.6 Kuniyeda, Th. (6)

+---4ag,a, #0, k=0,1,...

Theorem 6 (Kuniyeda [7]) Let p,q > 1 mit % + % = 1. All zeros of

f(Z):Cann_Fan_lznfl_‘_..—|-a0,an#o,azec7i:0,17...7n

lie in

1
n—1 a; % a
Z\”]

i—o 9n

|z| < {1+

10

’n (3.3)
’n (3.4)
7n (3.5)

(3.6)



3.7 Kuniyeda, Th. (7)

Theorem 7 (Kuniyeda [7]) For p > 0, all zeros of

f(2)=an2" +an 12" '+ 4ag,an #0,a,€C,i=0,1,--

lie in
D

L (e L
i i Ger) 1)
an| ?  \i=1

3.8 Joyal, Th. (8)

Theorem 8 (Joyal [4]) Forp,q>1 and % + é =1, all zeros of

f(2) = an2™ + an_12"!

lie in
1

L))

1
P\ r
,a,1:0.

where

Gn—10n—k — Gnlp—k—1

2
an

M, = (Z

k=1

3.9 Dehmer, Th. (9)

Theorem 9 (Dehmer [2]) Let

1

f(Z) =ap2" +ap—12"" " +---+ag, apan—1 # 0,

be a complex polynomial. All zeros of f(z) lie in the closed disk

K (o, Lros ¢<¢2—12>2+4M1>’

where
Ap—1

an

11

+,,_+a0’an;é(),a,;ec,z':(),l,...

(3.7)
(3.8)
(3.9)
(3.10)
(3.11)



3.10 Dehmer, Th. (10)
Theorem 10 (Dehmer [2]) Let

f(z) = anz" + an12" '+ +ag, apan—1 #0,

be a complex polynomial. Suppose that ¢o := aZ‘l and
laj| <1,0<j<n-—2. (3.12)
All zeros of f(z) lie in the closed disk
K (0, Lo, \/(¢2_1)2+'f"'). (3.13)
2 2
The bound is sharp for all polynomials of the form
f(2)=az" —b2"" P~ "2 4. 4 z2+1], a,b>0. (3.14)

3.11 Cauchy, Th. (11)
Theorem 11 (Cauchy [8]) Let
f(2) =, 2" ap 12" Fag, an #0,k=0,1,...,n

be a complex polynomial. All zeros of f(z) lie in the closed disk K(0,pc), where po
denotes the positive zero of

He(z) == |ag| + |a1]z 4 - + |an_1]2" 1 = |an|2™ (3.15)

3.12 Dehmer, Th. (12)
Theorem 12 (Dehmer [1]) Let
f(z) =anz" + an-12""1 4+ +ag, anan—1 #0, (3.16)

be a complex polynomial. All zeros of f(z) lie in the closed disk K (0, max(1,0)) where §
denotes the positive root of the equation

2" (14 My)2" + My = 0, (3.17)
and
My := max |2 (3.18)
0<j<n—1|ay,

The bound is sharp for all polynomials of the form

f)=az"—blz"t+- +z+1], ab>0. (3.19)

12



3.13 Dehmer, Th. (13)

Theorem 13 (Dehmer [2]) Let
f(z) = an2" + an—l?«’ni1 +---4ag, anan—1 # 0,

be a complex polynomial. All zeros of f(z) lie in the closed disk K (0, max(1,0)) where §
denotes the positive root of the equation

Zn+1 _ (1 + an—1 )Zn + ( An-1| M1> 2”71 + M7 =0, (320)
an, an
and
M= max |2, (3.21)
0<j<n—2|ap
The bound is sharp for all polynomials of the form
f)=az"—bz" ' —c[e" 2+ 4+ 2+1], a,b>0,c>0. (3.22)

3.14 Dehmer, Th. (14)

Theorem 14 (Dehmer [2]) Let

ap—10n—j5 — Qpnlp—j—1
Mz = 1= 2
3 2%?2(” an2 , -1 07 (3 3)
and
a Ay Ay —
gy = T2~ Onin-z] (3.24)

In addition, let
f(Z) =a,2" + an—lzni1 +--+aog, anan—1 # 0,

be a complex polynomial. All zeros of f(z) lie in the closed disk K(0,d) where § > 1 is
the largest positive root of the equation

23— 22— (Ms+ ¢1)z+ ¢ = 0. (3.25)
Moreover,
1<d <14+ Ms;+ ¢1. (3.26)

3.15 Dehmer, Th. (15)
Theorem 15 (Dehmer [2]) Let
f(z) =2" —ai1z + ap, a1ag # 0, n > 2, (3.27)

be a complex polynomial. All zeros of f(z) lie in K(0,max(1,0)), where 0 is the unique
positive root of the equation
2" —la1|z — |ag| = 0. (3.28)

13



3.16 Dehmer, Th. (16)
Theorem 16 (Dehmer [2]) Let
f(z) =2" —a1z + ag, a1ap #0, n > 2, (3.29)

be a polynomial with arbitrary coefficients. All zeros of f(z) lie in K (0, max(1,0)), where
0 is the unique positive root of the equation

2" — Myz — My = 0. (3.30)

3.17 Dehmer Bounds Lacunary (1)
Theorem 17 (Dehmer [2]) If the real polynomial

f(z) =2" —2n—1) — a1z + ag, arag >0, n > 2, (3.31)
has two positive zeros, its largest positive zero § satisfies

§ < 1+ /a. (3.32)

3.18 Dehmer Bounds Lacunary (3)
Theorem 18 (Dehmer [2]) If the real polynomial
f(z) =2" —a1z + ao, a1,a0 >0, n > 2, (3.33)

has two positive zeros, its largest positive zero § satisfies

1 dai +1

0 < 3 + 5 (3.34)
3.19 Dehmer Bounds Lacunary (5)
Theorem 19 (Dehmer [2]) Let
f(z)=2"—2""Y—ayz+ag, ai,a0 #0, n > 2, (3.35)

be a complex polynomial. All zeros of f(z) lie in K(0,0), where 6 > 1 is the largest
positive root of the equation

AL _9um ]a1|22 + (|a1] — |ao|)z + |ao| = 0. (3.36)

14



3.20 Dehmer Bounds Lacunary (6)
Theorem 20 (Dehmer [2]) Let
My := max(|aa, |aol), (3.37)

and let
f(z)=2"= 2" —a1z +ao, a1,a0 # 0, n > 2, (3.38)

be a complex polynomial. All zeros of f(z) lie in K(0,0), where 6 > 1 is the largest
positive root of the equation

2" 22" My2? 4+ My = 0. (3.39)

3.21 Dehmer Bounds Lacunary (7)
Theorem 21 (Dehmer [2]) Let

f(z)=2"—2""'—ayz+ag, ar,a9 #0, n > 2, (3.40)
be a complex polynomial. All zeros of f(z) lie in

K(0,1+|CL1|+ ‘CLOD. (3.41)

3.22 Dehmer Bounds Lacunary (8)
Theorem 22 (Dehmer [2]) Let
f(z)=2"—2""1—a1z+ag, ar,ap #0,n > 2, (3.42)

be a complex polynomial. All zeros of f(z) lie in

}-i- V1 + 4]az| + 4ao]

K(0
(’2 2

). (3.43)

3.23 Dehmer Bounds Lacunary (9)
Theorem 23 (Dehmer [2]) Let
f(z) =2" —a1z + ao, a1,a0 #0, n > 2, (3.44)

be a complex polynomial. All zeros of f(z) lie in K (0, max(1,d)), where § is the unique
positive root of the equation
2" —lai|z — |ap| = 0. (3.45)

15



3.24 Dehmer Bounds Lacunary (10)
Theorem 24 (Dehmer [2]) Let
f(z) =2" —a1z + ap, a1,a0 # 0, n > 2, (3.46)

be a polynomial with arbitrary coefficients. All zeros of f(z) lie in K (0, max(1,0)), where
0 is the unique positive root of the equation

2" — Mgz — My = 0. (3.47)

3.25 Dehmer Bounds Lacunary (11)
Theorem 25 (Dehmer [2]) Let
f(z) =2"—a1z + aop, a1ap #0, n > 2, (3.48)

be a complex polynomial. All zeros of f(z) lie in

T dlag] 7 4
K (0, laal | Viar” + dJaof + > . (3.49)

2 2

3.26 Kalantari, Cor. (4.4)

Theorem 26 (Kalantari [5]) Let m > 2 and let ry, € [,1) be the positive root of the
polynomial
q(t) :==t™"1 t — 1. (3.50)

Form =2 and ro = %, all zeros of the complex polynomial

f(z) =an2" + n_12" Y dag, Anan_1 #£0,

)i> . (3.51)

lie in the closed disk
Ap—k
Qn

K(O,Q- max <
1<k<n

3.27 Kalantari, Cor. (4.5)

Theorem 27 (Kalantari [5]) Let m > 2 and let ry, € [1,1) be the positive root of the
polynomaial
q(t) :==t™"1 pt —1. (3.52)

Form =3 and r3 = ﬁ, all zeros of the complex polynomial

f(2) = anz" +an—12""' + - +ag, anay—1 #0,

16



lie in the closed disk

541
K <0, ‘[;

a_1 = 0.

1
Ap—10n—k+1 — Anlp—k |\ k
2 )
an

. max
2<k<n+1

3.28 Grouping of bounds

(3.53)

The program groups the bounds into 4 classes, which can be seen on the Main Form:

Group name

Bounds included

General bounds

Cauchy, Th. (1), Joyal, Th. (2), Mohammad,
Th. (3), Koijma, Th. (4), Jain, Th. (5), Ku-
niyeda, Th. (6), Kuniyeda, Th. (7), Joyal,
Th. (8), Dehmer, Th. (9), Cauchy, Th. (11),
Dehmer, Th. (12), Dehmer, Th. (13), Dehmer,
Th. (14), Kalantari, Cor. (4.4), Kalantari, Cor.
(4.5)

Special bounds

Dehmer, Th. (10)

Lacunary bounds 1

Dehmer Bounds Lacunary (1), Dehmer Bounds
Lacunary (5), Dehmer Bounds Lacunary (6),
Dehmer Bounds Lacunary (7), Dehmer Bounds
Lacunary (8)

Lacunary bounds 2

Dehmer Bounds Lacunary (3), Dehmer, Th.
(15), Dehmer, Th. (16), Dehmer, Th. (17)

Table 3.1: Bounds groups description

17
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