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Principal Components Analysis

Principal Components Analysis (PCA) is one of the most popular
methods for dimensionality reduction for pattern recognition problems.
Concerns computing of eigenvectors for the data covariance matrix. Fast
and efficient (O(n?3%) with all the tricks).

Figure: PCA illustrative example



Generalized Hebbian Algorithm

1. Initialization of the linear ANN without hidden nodes. The number
of outputs = required dimensionality.

2. Update ANN weights. For each training sample:
yi(t) = Y wi(t)x(t),
i=1

Awi(t) — n[y,-(t)x,-(t)—yj(r)zwkmr)yk(t)],
k=1

3. If stopping criterion is failed go to Step 2.



Generalized Hebbian Algorithm

Two options

1. Compute all eigenvectors and eigenvalues and apply selection
mechanism to reduce dimensionality. Higher computational
complexity.

2. Set the required dimensionality beforehand. Requires guessing of
"true” data set dimensionality.

Sweet dreams
Itd be good if we could remove output nodes dynamically.

1. Reduces computational complexity.

2. Doesnt require guessing the data dimensionality.



A bit of theory

Can we remove inexact non-informative
eigenvectors?

Proposition

Let X ={X;,i=1,...,N},X; € R" be a set of data points and

Q ={q;,i =1,...,n} is an orthogonal basis in R". Denote proj,,(X) as
projection of data points from X onto coordinate vector q;, and
Var(projq, (X)) as a variance of correspondent projections. Then
summation over all dimensions

> Var(projg (X))
i=1,...,n

is constant and doesn’t depend on Q.



In other words . ..
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Sum variance of projections can be treated as a finite resource.



How to decide?

We suppose that all eigenvectors estimates are sorted by projection
variances (e.g. significance).

Criterion for throwing away "bad"” eigenvectors estimates:

Var(proji, (X))

Var(proja (X))
where §; — estimate of the /-th eigenvector, 7 is a threshold. Typical
values for 7 are 5, 10, 15, 20, . ...

It is possible to truncate low-informative subspaces without knowing
exact coordinates of principal eigenvectors = pseudo-PCA (pPCA).

(1)

Sorry for the typo :(



The Neuroevolutionary Algorithm

1. Initialize random population, each individual is a candidate solution
for pPCA.

2. Evaluate each individual using the following fitness function:

f = ax Z Var(projs, (X)) — max,

i=1,...,n
a = (agr)*r=Céo/||Caol.-

and remove nodes, for which criterion (1) is satisfied.
3. Selection
4. Crossing and Mutation.

5. If algorithm’s run is completed then proceed to Step 6, otherwise
proceed to Step 2.

6. Return the best found individual.



Fitness evaluation

AL

Assign genes of individual to Artificial neural network with linear
nodes.

Apply Gram-Schmidt orthogonalization to ANN weights.
Compute responses of ANN for each training sample.
Compute variances of ANN outputs.

Sort ANN nodes by the decrease of variances.

Copy obtained vector of weights back into chromosome.



Special crossing operator

Two parents — one child.
Crossing is performed " by neurons” using formula (for the k-th output

node):
(k) _ (k)
(k) — (k) v — Vi | (k) _ (k)
c Wl ||W(k) . W(k)H (WI WJ ) (2)
i J
where V,.(k) = vi(k)/(v,.(k) + vj(k)) — normalized "weight” of the k-th node;

v/ — variance of projection onto the (k)-node of i-th individual; |

Euclidian norm.

Overall expression (2) can be treated as linear approximation of the
(k)

i

gradient ascent for the update of k-th part, moving from the point w



Goals & Test Problems

Goals
1. It is important to find out whether efficient dimensionality reduction
is possible.

2. Since pPCA doesn't yield linear subspaces associated with the
principal components it's also important to know how this affects
classification accuracy.

Probenl data set

Probenl problem # of features | # of classes | Training / Validation /
name Test sets sizes

cancerl 9 2 350 / 175 / 174

cardl 51 2 345 / 173 / 172
diabetesl 8 2 384 /192 / 192

glassl 9 6 107 / 54 / 53

heartl 35 2 460 / 230 / 230

horsel 58 3 182 /91 /91

thyroidl 21 3 3600 / 1800 / 1800




Comparison

Problem T=5 T=10 T=15 T =20
cancerl (9) 2.30 (1) 2.82 (1.2) 1.78 (4.6) 1.84 (6.3)
cardl (51) | 16.28 (28.5) | 15.41 (50.7) | 15.64 (51) | 15.76 (51)

diabetesl (8) || 24.95 (7.6) | 25.00 (8) | 25.00(8) | 25.00 (8)

glassl (9) || 36.23 (5.5) | 33.02 (6.7) | 32.07 (7.9) | 32.26 (8.4)
heartl (35) || 21.13 (22.3) | 19.91 (31.5) | 20.00 (34.2) | 20.04 (35)
horsel (58) || 28.79 (35.3) | 29.23 (57.7) | 30.66 (58) | 29.56 (58)

soybeanl (82) || 50.65 (3.3) | 20.47 (11.7) | 11.94 (26.1) | 10.47 (37.3)
thyroidl (21) || 7.19 (8.9) | 6.03 (16.3) | 5.87 (18) | 5.92 (19.8)

Table: Classification errors (%) for different values of T




Comparison

Problem Probenl GA | Prunning T=15
cancerl (9) 1.38 1.24 1.1 1.78 (4.6)
cardl (51) 14.05 14.27 13.7 15.64 (51)

diabetesl (8) 24.10 23.70 20.8 25.00 (8)
glassl (9) 32.7 47.62 30.2 32.07 (7.9)

heartl (35) 1072 | 21.87 | 185 | 20.00 (34.2)
horsel (58) 2919 | 26.44 | 269 30.66 (58)
soybeanl (82) || 9.06 | 847 | N/A | 11.94 (26.1)
thyroidl (21) || 232 | 6.12 5.7 5.87 (18)

Table: Classification errors (%), for some other approaches on the Probenl
data set



Change of averaged mean dimensionality
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Figure: Change of averaged dimensionality for cancerl, diabetesl, glassl and
heartl problems. 7 = 10.



Change of averaged variance of projections
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Figure: Change of averaged variances of projections of data points onto the
first 3 eigenvectors estimates for cancerl problem. 7 = 10.



Comparison

v

Dynamical Generalized Hebbian Algorithm with dynamical removal
of output nodes using (1) for 7 = 15 (GHA*);

Layered Genetic Programming (FLGP) (Lin etal., 2008);

Recursive Feature Elimination combined with multi-layered neural
network (RFENN)

> ...and support vector machines (RFESVM) (Windeatt, 2011).

v

v

Method cancerl diabetesl heartl
DGHA 1.44 (4) 24.43 (8) | 22.52 (17.7)
DGHA (autocor) 213 (1) | 25.93(1.8) | 22.17 (3.1)
FLGP 2.24 (5.2) | 27.24 (6.1) | 22.40 (11.0)
RFENN 4.00 (7) 24.90 (2) 21.00 (27)
RFESVM 3.70 (7) 24.50 (3) 20.00 (18)
NE pPCA 1.78 (4.6) | 25.00 (8) | 20.00 (34.2)

Table: Comparison of the test set classification errors (%) obtained using
different features selection methods for cancerl, diabetesl and heartl problems.
Average dimensionality of the resulting features space is given in brackets.



Experimental corollary

Pre-Conclusion

There are cases when it's not necessary to know exactly
principal components of autocorrelation matrix to perform a
reliable dimensionality reduction.

Self-repairing feature

Even if inexact linear subspaces were removed to cause a representation
error, the remaining components’ coordinates will be refined in
consecutive steps, which means that the remaining linear subspace is
rotated and this rotation should diminish the error.

Precedent
Neuroevolutionary algorithm which produces neural network with
tractable functionality.



Dynamical GHA

1. Initialization of the linear ANN without hidden nodes. The number
of outputs = required dimensionality.

2. Compute projections variances and remove output nodes, which
satisfy to the criterion (1).

3. Update ANN weights. For each training sample:
m
yi(t) = > wilt)x(t),
i=1

Bwi(e) = ny(edle) = () 3wl
k=1

4. If stopping criterion is failed go to Step 2.



Approximate eigenvectors

Ok, we can work with approximate covariance matrix eigenvectors.
Sources of inexactness:

» Approximate methods to compute eigenvectors.

» Inexact covariance matrix.




Dynamical GHA with reduced data set

1. Initialization of the linear ANN without hidden nodes. The number
of outputs = required dimensionality.

2. Compute projections variances and remove output nodes, which
satisfy to the criterion (1).

3. Sample r% of the data from the training set to update ANN weights.

4. Update ANN weights. For each training sample:
yi(t) = > wilt)x(t),
i=1

Awi(t) = n[y,-(t)x,-(t)—yj(t)Zkat)yk(t)],

5. If stopping criterion is failed go to Step 2.



Change of projection variances (cancerl)

Projection variances

Projection variances
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a) 100% of data;
c) 25% of data;

b)

50% of data;

d) 10% of data.




Speed-up and Accuracy (cancerl, 9 features, 350 samples)

Method 7T=5|7=10|7=15| 7=20
cancerl, 100% || 5.67 3.62 2.17 1.38
cancerl, 50% 9.13 5.93 3.35 2.37
cancerl, 25% 12.80 9.07 5.29 3.98
cancerl, 10% 20.32 13.35 8.81 7.31

Table: Speed-up of the DGHA using partial data in relation to the GHA

(218.74 ms).

Method T=25 T7=10 T=15 7=20
cancerl, 100% || 2.30 (1.0) | 1.78 (2.5) | 1.44 (4.0) | 1.67 (5.6)
cancerl, 50% 2.30 (1.0) | 2.24 (1.2) | 1.49 (4.3) | 1.49 (6.3)
cancerl, 25% 2.30 (1.0) | 2.24 (1.2) | 2.30 (4.4) | 1.90 (6.2)
cancerl, 10% 2.30 (1.0) | 2.18 (1.8) | 1.78 (4.7) 1.90 (7)

Table: Classification error of the DGHA (average dimensionality).



Speed-up and Accuracy (horsel, 58 features, 182 samples)

Method 7T=5|7=10| 7=15 | 7=20
horsel, 100% || 11.81 4.38 2.93 2.36
horsel, 50% || 21.81 8.62 5.73 4.41
horsel, 25% || 43.35 | 16.23 10.68 8.35
horsel, 10% || 90.32 | 34.04 22.43 17.25

Table: Speed-up of the DGHA using partial data in relation to the GHA
(12993.62 ms).

Method =5 T=10 T =15 T =120
horsel, 100% | 34. 07 (1.0) | 32.86(5.3) | 29.89 (27.3) | 26.81 (32.4)
horsel, 50% | 34.18 (1.0) | 32.86 (15.9) | 29.23 (26.9) | 28.68 (32.6)
horsel, 25% || 34.06 (1.0) | 30.77 (20.1) | 29.01 (28.6) | 28.57 (33.7)
horsel, 10% || 33.85 (1.0) | 29.34 (22.8) | 28.02 (30.6) | 28.68 (36.3)

Table: Classification error of the DGHA (average dimensionality).



Change of averaged mean dimensionality (DGHA)
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Figure: Change of averaged dimensionality for cancerl, diabetesl, glassl and
heartl problems for DGHA. 7 = 10.



Conclusion

Quite a simple proposition lead to:

> Novel way for dimensionality reduction using pseudo-PCA.

» NE pPCA — way to evolutionary training of ANN with tractable and
understandable results.
» Dynamical modification of the GHA algorithm (DGHA).

> Use of part of data to speed-up the DGHA.

Future Research:

1. Parallelization of the NE pPCA. The most time consuming part is
computation of fitness (75-80% of time). Each individual can be
evaluated in parallel.

2. Constraints for pPCA: use criteria from PCA and/or try to keep certain
amount of information when performing nodes removal.



Acknowledgements

The Foundation ( The Life)

The research is supported by the Russian Foundation for Basic Researches
(projects no. 11-07-00027-a, 12-08-00296-a, and 12-07-09226-mob_z).

The Colleagues ( The Universe)

Author thanks Dr. Yu. Burkatovskaya for her notes on the paper
contents, and O. Abdulganeev for classification results for GHA with
dynamical reduction of dimensionality for data auto-correlation matrix.

The Source Code (Everything. . .)

Mental Alchemy (http://code.google.com/p/mentalalchemy) and
Encog (http://www.heatonresearch.com/encog) open-source
projects were used to implement all the algorithms and experiments.


http://code.google.com/p/mentalalchemy
http://www.heatonresearch.com/encog

Thank you for attention!

Yury Tsoy
yurytsoy@gmail.com




	Introduction
	Idea of the Method
	Fitness evaluation
	Crossing

	Experiments Description
	Results of Experiments and Discussion
	Dynamical Generalized Hebbian Algorithm
	Dynamical Generalized Hebbian Algorithm with reduced data set
	Conclusion

