
Evolving Linear Neural Networks for Features
Space Dimensionality Reduction

Yury Tsoy
Computer Engineering Department

Tomsk Polytechnic University
Department of Economical Mathematics, Informatic and Statistics
Tomsk State University of Control Systems and Radioelectronics

Tomsk, Russia
Email: yurytsoy@gmail.com

Abstract—Principal Components Analysis (PCA) is one of the
most wide-spread methods for dimensionality reduction, which
is being applied in many research and problem domains. So
far a lot of approaches to compute data matrix eigenvectors,
which correspond to the Principal Components, were proposed,
among which numerical methods and Hebbian-based learning
for neural networks, including Generalized Hebbian Algorithm.
In this paper a novel way for computing eigenvectors using
evolving linear neural networks is introduced, which is not
relying upon correlation between nodes, but uses special fitness
function instead. Early removal of the low-informative linear
subspaces is applied, which reduces computational complexity of
the method, and besides eigenvectors coordinates are computed
approximately to improve convergence and speed. The latter gave
rise to the approach’s name: pseudo-PCA. Experimental results
show that not looking at inexact eigenvectors the approach allows
effective reduction of the features space dimensionality with
acceptable classification accuracy compared to some ”classical”
and modern approaches to solve classification problems.

I. INTRODUCTION

Reduction of dimensionality of the features space is one of
important problems in data analysis and pattern recognition
domains. It can be useful for several reasons, for example:

1) Reduction of computation complexity, since the less the
number of parameters to analyse, it’s often the less the
complexity of analysis.

2) Removal of noisy or irrelevant features, which might
mislead the analysis and recognition processes.

3) In large data-bases reduction of objects descriptions
size is useful to reduce demands to their storage and
infrastructure.

One of the most widely used methods to solve features space
reduction problem is Principal Components Analysis (PCA)
[4]. It can be explained by the fact that this method is powerful
enough and is based upon geometrically tractable and very
clear idea. This idea concerns that an object’s description is
a linear combination of some unknown factors (components),
represented in PCA as orthogonal vectors in a features space.
Thus the solution to PCA problem is to find some suitable
orthogonal basis, so that projection of objects’ description
(data points) on its 1st coordinate vector would have maximal
possible variance. If a linear subspace correspondent to this

vector is removed then projection of data points in the re-
maining subspace onto the 2nd vector would still be maximal,
etc. This basis appears to be constructed by eigenvectors of
the objects’ descriptions covariance matrix. Features space
dimensionality reduction is obtained via removal of those
coordinate vectors in the basis found, which associated with
smaller variances of the data points projections.

Due to necessity to find eigenvectors of the data covariance
matrix C numeric methods are traditionally applied to find
a solution for PCA method. Since C is symmetric special
more effective methods can be applied [3]. However one of
the problems to numeric computation of eigenvectors is that
they are hard to parallelize due to their iterative nature and
thus scale badly for large-scale problems.

There’s an alternative to ”purely” numeric methods like a
well-known artificial neural networks (ANN) approach using
Generalized Hebbian Algorithm (GHA) based upon Oja’s
rule [6], which uses Hebbian learning paradigm for linear
neural networks to obtain eigenvectors as weights of output
nodes. This method is easy to implement in parallel, but its
convergence may require hundreds and thousands of iterations.

In this paper a novel method for computation of eigen-
vectors using neuroevolutionary approach is presented. Like
GHA it uses ANNs without hidden layers and with linear
activations, but the whole training is performed during an
evolutionary process. One of peculiarities of the method is
that eigenvector’s coordinates are calculated approximately,
which leads to better convergence (in many cases O(101)
iterations) and yet provides powerful tool for dimensionality
reduction. The other feature is that online, directly during the
ANN training, removal of low-contributing eigenvectors (and
corresponding linear subspaces) is performed.

Since the presented method is not aimed at exact calculation
of eigenvectors it is referred as pseudo-PCA (pPCA).

The paper is organized as follows. Baseline idea, which lies
behind the method, is described in the Section II. Section III
gives explanation for the introduced algorithm and specific
procedures for fitness extimation and crossing. Experimental
settings are given in the Section IV, while Section V contains
results of experiments and their discussion. Conclusion pro-
vides brief review of the paper results and sketches-up possible

future research directions.

II. IDEA OF THE METHOD

Note that traditional PCA formulation considers finding
eigenvectors (principal components) with larger eigenvalues,
or in other words, linear subspaces with small variance of
data points projections do not fit to PCA. Such low-projection-
variance subspaces will be referred as low-contributing since
their contribution into data is small. The question of interest
is if at some training step t some low-contributing subspace is
found, can one throw it away without harm for the consequent
steps? The answer is positive due to the following

Proposition Let X = {Xi, i = 1, . . . , N},Xi ∈ Rn be a set
of data points and Q = {qi, i = 1, . . . , n} is an orthogonal
basis in Rn. Denote projq

j
(X) as projection of data points

from X onto coordinate vector qj and V ar(projq
j
(X)) as a

variance of correspondent projections. Then summation over
all dimensions

∑

j=1,...,n

V ar(projq
j
(X)) (1)

is constant and doesn’t depend on Q.

Proof: Variance of the j-th coordinate for the given data
set in the standard basis is:

V ar(projej
(X)) =

1

N

N∑

k=1

(xjk)
2 − 1

N2

(N∑

k=1

xjk

)2

.

where ej – j-th coordinate vector in the standard basis, xjk –
j-th coordinate of the k-th data point.

Summing over all coordinates we obtain:
n∑

j=1

V ar(projej
(X)) =

n∑

j=1

N∑

k=1

(xjk)
2

N
−

n∑

j=1

N∑

k,l=1

xjkx
j
l

N2

=
1

N

N∑

k=1

XTk Xk −
1

N2

N∑

k,l=1

XTk Xl

If Yk is vector of coordinates of Xk in the basis Q, then
Xk = QYk and:

n∑

j=1

V ar(projej
(X)) =

1

N

N∑

k=1

YTk QTQYk − 1

N2

N∑

k,l=1

YTk QTQYl

=

n∑

j=1

V ar(projq
j
(X))

which proofs the proposition.

Since covariance matrix is symmetric, its eigenvectors are
orthogonal and can be used as coordinate vectors of some
orthogonal basis. Thus the proposition says, that since sum
of projection variances is constant, then if columns Q̂ are

estimates for eigenvectors, the low-contributing columns in
Q̂ will be even less significant when coordinates of ”primary”
eigenvectors’ estimates are defined more precisely (with lesser
error). Thus we can throw away basis vectors, which do not
fit some criterion, as non-informative without much harm for
elaboration of coordinates of more significant vectors. This
has certain benefits from the computational point of view
because dimensionality of the problem is reduced when low-
contributing basis vectors are removed.

In other words, one can treat the proposition in the way
that sum variance of data points projections onto orthogonal
coordinate vectors can be considered as a sort of finite re-
source, which is distributed among coordinate vectors. Hence
if variance of projections onto certain vector is increased, there
must be a vector (or vectors), for which variance of projections
reduces. This result can serve as a basis for suggestion that
low-contributing eigenvectors will not be ”enhanced” (in the
sense of projection variance) on the following iterations and
thus can be neglected.

In this paper the criterion for removal of low-informative
eigenvectors (subspaces) is (eigenvectors are supposed to be
sorted by decrease of variance):

V ar(projq̂
1
(X))

V ar(projq̂
i
(X))

< τ, (2)

where q̂i – is an estimate of the i-th eigenvector, τ – a thresh-
old. The less the value of τ , the more eigenvectors will be
neglected and thus more effective dimensionality reduction is
possible. Typical choice for τ could be 5, 10, 15, However
it’s not clear for now how to adjust this parameter properly.
There are some experimental evidences, described below,
which show that acceptable value for τ for the presented
algorithm could be 15, to trade-off between dimensionality
reduction and classification accuracy, but this setting should
definitely depend on the training data ”geometry”.

The question of selection of proper value for τ is relative to
selection of the target number of features after the dimension-
ality reduction and doesn’t have a universal answer for now,
since there’ s often no exact data on informativeness of various
features. Nevertheless it seems that dynamical tuning of the
number of features using τ is more reasonable than trying to
guess a suitable features space dimensionality in advance.

Note, that criterion (2) can also be applied for the standard
GHA as well to remove nodes, which weights correspond to
low-contributing eigenvectors. This removal should not affect
more significant nodes, because in the GHA training of the
i-th output node doesn’t depend on training of outputs i +
1, i+ 2, . . . [6].

III. ALGORITHM’S DESCRIPTION

Consider ANN without hidden layers and with 1 linear
node. The output signal for such a network equals to y = wT x.
Assuming that ‖w‖ = 1 it’s clear that y is a coordinate
of projection of the point x onto vector w. For ANN with
n output nodes, which weights equal to basis vectors for
some orthogonal basis in Rn, output signal for input x will

contain coordinates of projections onto those basis vectors.
Thus, an equivalence can be established between weights of
some output node and some coordinate vector from orthogonal
basis. In what follows these two notions will be considered as
synonims.

The above argumentation gives rise to the following neu-
roevolutionary algorithm:

1) Initialize random population, each individual is a candi-
date solution for pPCA.

2) Evaluate each individual using the following fitness
function:

f = α
∑

i

V ar(projq
i
(X))→ max, (3)

α = (q̂T1 r)2, r =
Cq̂1

‖Cq̂1‖
.

Coefficient α is introduced to evaluate how close the
most ”principal” eigenvector estimate to the true eigen-
vector. Let q̂1 – be a normalized eigenvector, then

α =

(
q̂T

1
Cq̂

1

‖Cq̂
1
‖

)2

=

(
λq̂T

1
q̂

1

‖λq̂
1
‖

)2

= 1, and if q̂1 is not an

eigenvector: α < 1. A small discussion of the selected
fitness function is given in the subsection III-A below.

3) a Compute vector of mean variances var of data
points projections onto eigenvectors’ estimates
by all individuals in population.

b Starting from the last element in var check
whether criterion (2) is satisfied. If it does for
some k-th element, then remove correspondent
genes from all individuals in population. If not,
then proceed to Step 4.

4) Selection
5) Crossing and Mutation.
6) If algorithm’s run is completed then proceed to Step 7,

otherwise proceed to Step 2.
7) Return the best found individual.
Due to the Step 3 there is a possibility to remove output

nodes in the ANN under training. Since the number of output
nodes defines the number of principal components to describe
our training data, this removal step implies reduction of the
features space dimensionality. To implement evaluation of
fitness and crossing of individuals special operators procedures
are used, which are described below.

A. Fitness Estimation

Fitness evaluation procedure can be described by the fol-
lowing algorithm (for the i-th individual):

1) Assign genes of the individual to ANN weights.
2) Apply Gram-Schmidt orthogonalization to ANN

weights.
3) Compute responses of ANN for each training sample.
4) Compute variances of ANN outputs.
5) Sort ANN nodes by decrease of variances.
6) Copy obtained vector of weights back into chromosome.

Sorting of ANN outputs by responses’ variance is required
to order basis vectors, correspondent to the nodes’ weights,
by their contribution to training data representation, and to
define which coordinate vectors are more or less informative
with respect to the training data. Note that evaluation of each
individual is independent and can be performed in parallel.

Also note that expression (3) contains sum of projection
variances, which was prooved to be constant in the previous
Section. However this sum is constant only when estimates
of all n principal components are considered. When some
component is removed the sum over coordinate vectors for
remaining subspaces will depend on those vectors’ coordi-
nates and since individuals in population represent different
principal components estimates this sum will be different for
reduced feature spaces.

B. Crossing

The presented algorithm uses a special crossover operator,
which utilizes linear approximation of the fitness function
gradient.

Let i-th and j-th individuals are to be crossed, each rep-
resenting combination of all weights of ANN (wi and wj
respectively). Suppose that the i-th individual is the better one
(more fit than the j-th individual). Each vector of weights is
split into NO non overlapping parts, where NO – is a number
of ANN outputs:

wi = {w(k)
i , k = 1, . . . , NO},

so that each k-th part corresponds to weights of the k-th
output node. With each part w(k)

i a weight v(k)i is associated,
which equals to variance of projection of training data onto
the correspondent coordinate vector.

The crossing of two individuals is performed part-wise to
produce one offspring using:

c(k) = w(k)
i +

|v(k)i − v
(
jk)|∥∥w(k)

i − w(k)
j

∥∥
(
w(k)
i − w(k)

j

)
, (4)

where c(k) – k-th part of the offspring’s chromosome.
The fraction in (4) is necessary to approximate the absolute

value of gradient of k-th vector so that overall expression (4)
can be treated as linear approximation for the update of k-th
part moving from the point w(k)

i .

IV. EXPERIMENTAL SETUP

Main goal of the experimental study is twofold:
1) Since pPCA doesn’t obligatory yield exact principal

components it’s important to know how this affects
classification accuracy.

2) It is also important to find out whether efficient dimen-
sionality reduction is possible using the pPCA algorithm.

Testing of the proposed pPCA method will be conducted
using several classification problems from the Proben1 set
[7], namely: cancer1, card1, diabetes1, glass1, heart1, horse1,
soybean1, thyroid1. Some numerical characteristics of these
problems are given in the table I.

TABLE I
INFORMATION ON THE PROBLEMS FROM THE PROBEN1 TEST SET

Problem
Name

of features # of classes Training / Valida-
tion / Test sets sizes

cancer1 9 2 350 / 175 / 174
card1 51 2 345 / 173 / 172
diabetes1 8 2 384 / 192 / 192
glass1 9 6 107 / 54 / 53
heart1 35 2 460 / 230 / 230
horse1 58 3 182 / 91 / 91
thyroid1 21 3 3600 / 1800 / 1800

ANN-1 trained by
the NE algorithm

ANN-2 trained by
the gradient algorithm

∑

∑

I

I

I

I

I

Fig. 1. Combination of ANN-1, trained using neuroevolutionary approach for
dimensionality reduction, and ANN-2 trained for classification. Both networks
doesn’t contain hidden layers and output signals from ANN-1 serve as inputs
for ANN-2. ANN-1 has linear activations, while output nodes for ANN-2 use
”standard” sigmoid activation functions: f(x) = (1 + exp(−wT x))−1. ”I”
means identity activations, f(x) = x, x ∈ R.

One of the peculiarities of the Proben1 dataset is that
training, validation and testing subsets are defined explicitely
by the Proben1’s author. Also all preprocessing steps were
also done by L. Prechelt including data normalization, numeric
representation for categorical entries and filling gaps. All
this was made to provide equal initial conditions for proper
comparison of different classification methods [7].

NE approach is to be used for reduction of the features space
dimensionality and after that transformed objects descriptions
will be used to train feed-forward ANN using traditional
gradient training. Scheme for combination of the resulting
ANNs is shown in fig. 1. After ANN-1 and ANN-2 are trained
they can be united into a single ANN in an obvious way.

The following values for criterion value τ for removal
of non-informative linear subspaces according to (2) to be
considered: 5, 10, 15, 20.

During each run a pPCA solution to be found and for
this solution 10 ANNs will be trained, using the RPROP
algorithm [8]. From these 10 ANNs only one is selected using
classification error on a validation data set. This winning ANN
is used for classification of samples from a test data set. For
each problem 10 runs are performed in this way and mean
classification accuracy is used for comparison and analysis.

Parameters settings for EA and RPROP are presented in
tables II and III respectively. These parameters were picked
experimentally and parameters for the RPROP algorithm were
set according to the recomendations from [8].

TABLE II
PARAMETERS SETTINGS FOR EVOLUTIONARY ALGORITHM.

Parameter Value
Encoding Real

Population Size 50
Generations number 50

Selection Tournament (tour size = 5)
Crossover probability 0.7
Mutation probability 0.05

TABLE III
PARAMETERS SETTINGS FOR RPROP ALGORITHM.

Parameter Value
Epochs 1000
η+ 1.2
η− 0.5
∆0 0.1

∆max 50
∆min 1e−6

Early stopping threshold 10%

TABLE IV
CLASSIFICATION ERRORS (%) FOR DIFFERENT VALUES OF τ . VALUES IN
BRACKETS SHOW INITIAL (FIRST COLUMN) AND RESULTING (ALL OTHER

COLUMNS) DIMENSIONALITY OF THE FEATURES SPACE.

Problem τ = 5 τ = 10 τ = 15 τ = 20

cancer1
(9)

2.30 (1) 2.82 (1.2) 1.78 (4.6) 1.84 (6.3)

card1
(51)

16.28 (28.5) 15.41 (50.7) 15.64 (51) 15.76 (51)

diabetes1
(8)

24.95 (7.6) 25.00 (8) 25.00 (8) 25.00 (8)

glass1
(9)

36.23 (5.5) 33.02 (6.7) 32.07 (7.9) 32.26 (8.4)

heart1
(35)

21.13 (22.3) 19.91 (31.5) 20.00 (34.2) 20.04 (35)

horse1
(58)

28.79 (35.3) 29.23 (57.7) 30.66 (58) 29.56 (58)

soybean1
(82)

50.65 (3.3) 20.47 (11.7) 11.94 (26.1) 10.47 (37.3)

thyroid1
(21)

7.19 (8.9) 6.03 (16.3) 5.87 (18) 5.92 (19.8)

Software implementation of pPCA and its application for
solving classification problems uses the MentalAlchemy1 and
the Encog2 open-source libraries and is available as part of
the MentalAlchemy project.

V. RESULTS OF EXPERIMENTS AND DISCUSSION

A. Classification accuracy results

Test set classification errors are given in the Table IV. Also
the number of ANN outputs (remaining principal components
estimates) in result of neuroevolutionary pPCA is given in
brackets to evaluate dimensionality reduction.

For different problems change of τ had different impact on
the resulting number of features due to pPCA. Nevertheless

1http://code.google.com/p/mentalalchemy/
2http://www.heatonresearch.com/encog

TABLE V
CLASSIFICATION ERRORS (%) OBTAINED USING SOME OTHER

APPROACHES. FOR [7], [1], [10] THE BEST OBTAINED RESULTS ARE
GIVEN. GA – TRAINING OF ANN USING GENETIC ALGORITHM.
PRUNNING – TRAINING OF ANN USING POSTPROCESSING WITH

PRUNNING ALGORITHMS.

Problem ANN[7] GA[1] Prunning[10] pPCA, τ = 15

cancer1 (9) 1.38 1.24 1.1 1.78 (4.6)
card1 (51) 14.05 14.27 13.7 15.64 (51)

diabetes1 (8) 24.10 23.70 20.8 25.00 (8)
glass1 (9) 32.7 47.62 30.2 32.07 (7.9)
heart1 (35) 19.72 21.87 18.5 20.00 (34.2)
horse1 (58) 29.19 26.44 26.9 30.66 (58)

soybean1 (82) 9.06 8.47 N/A 11.94 (26.1)
thyroid1 (21) 2.32 6.12 5.7 5.87 (18)

it can be seen that recommendable value for τ is likely to be
not less than 15.

For comparison Table V contains the best classification
error values for the problems under consideration for some
other methods. Results from [7] are obtained using traditional
approach for ANN training with manual tuning of ANN
structure and using RPROP algorithm for weights tuning;
results of a pure evolutionary training of neural weights for
ANN with a fixed structure are taken from the [1]; and research
results from [10] are obtained for ANN trained using gradient-
based method with application of prunning algorithms.

Comparison of these results shows that for many problems
features space dimensionality reduction obtained using pPCA
provides comparable classification accuracy with respect to
more ”traditional” training methods. Note that for some prob-
lems there was a significant reduction of the number of
features (problems cancer1 and soybean1).

B. Features space dimensionality reduction

Figures 2 and 3 depict examples of change of a mean fea-
tures space dimensionality (the number of remaining compo-
nents for pPCA); and variance of projections onto eigenvectors
estimates with respect to algorithm iterations (generations).
All results are averaged over 100 independent runs. It can be
seen that variance of projections onto the ”main” principal
component vector increases over time, while variances for
other vectors decrease, which shows the improvement of the
principal components coordinates by the pPCA.

In order to estimate efficiency of the dimensionality reduc-
tion using the pPCA (τ = 15) a comparison with results
from the literature was made (table VI). The methods are:
Generalized Hebbian Algorithm with dynamical removal of
output nodes using (2) for τ = 15 (GHA*); Layered Genetic
Programming (FLGP) [5]; Recursive Feature Elimination com-
bined with multi-layered neural network (RFENN) and support
vector machines (RFESVM) [9].

The results from the table VI show that pPCA shows slightly
worse performance considering the resulting dimensionality
of the features space, but it is compensated by lower classi-
fication error rates. Also note results for the GHA*, which

30,5
31
31,5
32
32,5
33
33,5
34
34,5
35
35,5

0
1
2
3
4
5
6
7
8
9
10

1 4 7 1013161922252831343740434649

Количество признаков,
heart1

Количество признаков,
cancer1,

diabetes1, glass1

Время, поколения

cancer1

diabetes1

heart1

glass1

of

 fe
a t

ur
es

, h
ea

rt1

Time, generations

of

 fe
a t

ur
es

, c
an

ce
r1

,
di

ab
et

e s
1,

 g
la

s s
1

Fig. 2. Change of a mean number of ANN outputs (features space
dimensionality) trained using pPCA over time for the problems cancer1,
diabetes1, glass1, heart1, for τ = 10. The results are averaged over 100
runs.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Дисперсия проекций

Время, поколения

q1

q2

q3

q4

q5

q6

q7

q8

q9

Time, generations

Pr
oj

ec
tio

ns
 V

ar
ia

nc
e

Fig. 3. Dynamics of a mean variance of projections onto eigenvectors
estimates for the problem cancer1, for τ = 10. The results are averaged
over 100 runs.

TABLE VI
COMPARISON OF THE TEST SET CLASSIFICATION ERRORS (%) OBTAINED

USING DIFFERENT FEATURES SELECTION METHODS FOR cancer1, diabetes1
AND heart1 PROBLEMS. AVERAGE DIMENSIONALITY OF THE RESULTING

FEATURES SPACE IS GIVEN IN BRACKETS.

Method cancer1 diabetes1 heart1
GHA* 2.13 (1) 25.93 (1.8) 22.17 (3.1)

FLGP [5] 2.24 (5.2) 27.24 (6.1) 22.40 (11.0)
RFENN [9] 4.00 (7) 24.90 (2) 21.00 (27)

RFESVM [9] 3.70 (7) 24.50 (3) 20.00 (18)
pPCA 1.78 (4.6) 25.00 (8) 20.00 (34.2)

outperformed all other methods for dimensionality reduction
while providing a comparable classification accuracy.

With all these results the following quite interesting conclu-
sion can be made:

There are cases when it’s not necessary to know exact
principal components of data covariance matrix to per-
form a reliable dimensionality reduction.

Interesting question is what the price for use of approxi-
mate principal components is. If exact non-informative linear
subspaces were ripped off, then transformed features would
be living in a ”correct” subspace and hence there is a linear
transformation, which converts remaining eigenvectors esti-
mates obtained by pPCA to the exact solutions for PCA. But
if dimensionality reduction was made for inexact eigenvectors
then there’s a transformation error for pPCA comparing with
the PCA. The measurement of this error is tricky because
exact eigenvectors are supposed to be unknown. However the
method seems to have a ”self-repairing” feature: even if inex-
act linear subspaces were removed to cause a representation
error, the remaining components’ coordinates will be defined
more precisely on consequent steps of the algorithm, which
means that the remaining linear subspace is rotated and this
rotation should diminish the error. Hence pPCA error is an
open question, which should be studied thoroughly in order to
understand features of the pPCA and hopefully develop new
efficient methods for dimensionality reduction.

VI. CONCLUSION

The paper presents novel way for dimensionality reduction
using pseudo-PCA. The method is based upon application
of neuroevolutionary approach for feed-forward linear neural
networks without hidden nodes and uses special procedures
for fitness estimation and a crossover operator.

Experimental results show that even though the reduction
of features space dimensionality was performed using inexact
eigenvectors the obtained classification results are comparable
with that of ANNs trained in more traditional ways.

Interesting questions for the future research are paralleliza-
tion of the pPCA algorithm and analysis of the computational
error of eigenvectors estimates. Also a question for selection of
the proper value for τ parameter, which regulates the resulting
features space dimensionality, is open and its study could
improve the adaptive properties of the pseudo-PCA method.

ACKNOWLEDGMENT

The research is supported by the Russian Foundation for
Basic Researches (project no. 11-07-00027-a).

Author thanks Dr. Yu. Burkatovskaya for notes on the paper
contents, O. Abdulganeev for classification results using GHA
with dynamical reduction of dimensionality, and anonymous
reviewers for their valuable comments, which helped to im-
prove the paper.

REFERENCES

[1] F.Y. Barrera Busqueda de la estructura optima de redes neurales
con Algoritmos Geneticos y Simulated Annealing. Verificacion con el
benchmark PROBEN1 Inteligencia Artificial, Revista Iberoamericana de
Inteligencia Artificial. 2007. Vol. 11. No. 34. P. 41-61.

[2] I. De Falco, A. Della Cioppa, E. Tarantino Discovering interesting
classification rules with genetic programming Applied Soft Computing.
2002. Vol. 1. No. 4. P. 257-269.

[3] G.H. Golub, C.F. Van Loan Matrix Computations. Second Edition.
Baltimor, London: The John Hopkins University Press, 1989.

[4] I.T. Jolliffe Principal Component Analysis. Springer Series in Statistics.
NY: Springer, 2002.

[5] J.-Y. Lin, H.-R. Ke, B.-C. Chien, W.-P. Yang Classifier design with fea-
ture selection and feature extraction using layered genetic programming
Expert Systems with Applications. 2008. Vol. 34. No. 2. P. 1384-1393.

[6] E. Oja Simplified neuron model as a principal component analyzer
Journal of Mathematical Biology. 1982. Vol. 15. No. 3. P. 267-273.

[7] L. Prechelt PROBEN1 – a set of neural network benchmark problems
and benchmarking rules. Technical Report 21/94. – Universitat Karl-
sruhe, Karlsruhe, Germany, 1994.

[8] M. Riedmiller Rprop - Description and Implementation Details Techni-
cal report. Universtiy of Karlsruhe, 1994.

[9] T. Windeatt, R. Duangsoithong, R. Smith Embedded Feature Ranking
for Ensemble MLP Classifiers IEEE Transactions on Neural Networks.
2011. Vol. 22. No. 6. P. 988-994.

[10] N. Weman Empirical Investigation of the Effect of Pruning Artifical
Neural Networks With Respect to Increased Generalization Ability
Linkopings universitet, Sweden, 2010.

[11] F. Zhu, S.-U. Guan, P. Li Feature Selection for Modular GA-based
Classification Applied Soft Computing. 2004. Vol. 4. No. 4. P. 381-393.

