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Introduction

Features space dimensionality reduction problem arises in many practical
applications.

Principal Components Analysis (PCA) is one of the most popular methods.
Concerns computing of eigenvectors for the data covariance matrix.
Geometrically plausible, fast and efficient (O(n?3°) with all the numerical tricks).

Figure: lllustrative example for eigenvectors.
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Generalized Hebbian Algorithm

Algorithm
@ Initialization of the linear ANN without hidden nodes. The number of outputs = required
dimensionality.

@ Update ANN weights. For each training sample:

m

yi(t) = D wi(t)xi(o),

i=1

Aw;i(t)

. [y,-(t)x,-(t) e wk,-(t)yk(t)] ,
k=1

© |If stopping criterion is failed go to Step 2.

Yury Tsoy (TPU) NNs for Dimensionality Reduction IFOST 2012, Tomsk (Sept. 18, 2012) 4/23



Generalized Hebbian Algorithm

Algorithm
@ Initialization of the linear ANN without hidden nodes. The number of outputs = required
dimensionality.

@ Update ANN weights. For each training sample:

m

yi(t) = D wi(t)xi(o),

i=1

Bwit) = ()l = (0 X walehn ()]
k=1

© |If stopping criterion is failed go to Step 2.

Problems with GHA
@ Tricky for dimensionality reduction (explained below).
@ Slow convergence (may take thousands of iterations).
@ Takes much time.
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Generalized Hebbian Algorithm

GHA for dimensionality reduction (two options)
© Compute all eigenvectors and eigenvalues and apply selection mechanism to reduce
dimensionality. Higher computational complexity.

@ Set the required dimensionality beforehand. Requires guessing of "true” data set
dimensionality.
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Generalized Hebbian Algorithm

GHA for dimensionality reduction (two options)

© Compute all eigenvectors and eigenvalues and apply selection mechanism to reduce

dimensionality. Higher computational complexity.

@ Set the required dimensionality beforehand. Requires guessing of "true” data set

dimensionality.

GHA is relatively slow

Problem name GHA (50 iterations), ms | MATLAB cov+eig time, ms
cancerl 218.74 0.07
cardl 13113.56 4.4
horsel 8463.24 6.6
thyroidl 12206.75 1.8
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Generalized Hebbian Algorithm

GHA for dimensionality reduction (two options)

© Compute all eigenvectors and eigenvalues and apply selection mechanism to reduce

dimensionality. Higher computational complexity.

@ Set the required dimensionality beforehand. Requires guessing of "true” data set

dimensionality.

GHA is relatively slow

Problem name GHA (50 iterations), ms | MATLAB cov+eig time, ms
cancerl 218.74 0.07
cardl 13113.56 4.4
horsel 8463.24 6.6
thyroidl 12206.75 1.8

Sweet dreams

It would be good if we could remove output nodes dynamically.

@ Reduces computational complexity.

@ Does not require guessing the data dimensionality.

y
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A bit of theory

If we want to remove outputs of ANN dynamically we've got to do it using
approximate eigenvectors’ coordinates.

Can we remove inexact non-informative eigenvectors?
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A bit of theory

If we want to remove outputs of ANN dynamically we've got to do it using
approximate eigenvectors’ coordinates.

Can we remove inexact non-informative eigenvectors?

Proposition

Let X ={X;,i=1,...,N},X; € R" be a set of data points and

Q = {q;,i =1,...,n} is an orthogonal basis in R". Denote projg (X) as
projection of data points from X onto coordinate vector q;, and Var(projg, (X)) as
a variance of correspondent projections. Then summation over all dimensions

S Var(proja (X))

i=1,...,n

is constant and doesn’'t depend on Q.
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In other words . ..

[llustrative example
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Sum variance of projections can be treated as a finite resource, which is
"distributed’ over coordinate vectors (eigenvectors estimates).
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How to decide?

We suppose that all eigenvectors estimates are sorted by projection variances (e.g.
significance).

Criterion for throwing away "bad"” eigenvectors estimates:
Var(proja, (X))
; >T I
Var (projy (X)) )

where q; — estimate of the i-th eigenvector, 7 is a threshold. Typical values for 7
are 5, 10, 15, 20, ....

It is possible to truncate low-informative subspaces without knowing exact
coordinates of principal eigenvectors = pseudo-PCA (pPCA).
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How to decide?

We suppose that all eigenvectors estimates are sorted by projection variances (e.g.
significance).

Criterion for throwing away "bad"” eigenvectors estimates:
Var(proja, (X))
; >T I
Var (projy (X)) )

where q; — estimate of the i-th eigenvector, 7 is a threshold. Typical values for 7
are 5, 10, 15, 20, ....

It is possible to truncate low-informative subspaces without knowing exact
coordinates of principal eigenvectors = pseudo-PCA (pPCA).

@ Smaller values of 7 — smaller dimensionality (more features removed).
o Larger values of 7 — larger dimensionality (less features removed).
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Dynamical GHA

@ Initialization of the linear ANN without hidden nodes. The number of
outputs = required dimensionality.

@ Compute projections variances and remove output nodes, which satisfy to the
criterion (1).

© Update ANN weights. For each training sample:

yi(t) = Y wit)xi(t),

Awj(t) = n{yj(t)xf )’J(tZWkr )yu(t ]

@ |If stopping criterion is failed go to Step 2.
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The Neuroevolutionary Algorithm

@ Initialize random population, each individual is a candidate solution for
pPCA (linear ANN without hidden nodes).

@ Evaluate each individual using the following fitness function:

f = ax Z Var(projs, (X)) — max,

i=1,...,n
a = (agr)*r=Céo/||Caol.-

and remove nodes, for which criterion (1) is satisfied.
Selection
Crossing and Mutation.

If algorithm’s run is completed then proceed to Step 6, otherwise proceed to
Step 2.

Return the best found individual.

© 000
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Goals & Test Problems

Goals

@ It is important to find out whether efficient dimensionality reduction is

possible.

@ Since pPCA doesn't yield linear subspaces associated with the principal
components it's also important to know how this affects classification

accuracy.

Probenl data set

Probenl problem # of features | # of classes | Training / Validation /
name Test sets sizes

cancerl 9 2 350 / 175 / 174

cardl 51 2 345 /173 / 172
diabetesl 8 2 384 /192 / 192

glassl 9 6 107 / 54 / 53

heartl 35 2 460 / 230 / 230

horsel 58 3 182 /91 /91

thyroidl 21 3 3600 / 1800 / 1800
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Comparison

Classification errors (%) for different values of 7

Problem T=5 T =10
NE pPCA DGHA NE pPCA DGHA
cancerl (9) 2.3 (1) 2.30 (1) 1.7 (2.5) 2.82 (1.2)
cardl (51) || 14.48 (8.3) | 16.28 (28.5) | 13.66 (11.7) | 15.41 (50.7)
diabetesl (8) || 24.74 (7.6) | 24.95 (7.6) | 24.38 (8) 25.00 (8)
glass (9) 717 (1) | 36.23 (5.5) | 40.38 (4.3) | 33.02 (6.7)
heartl (35) || 21.3 (9.9) | 21.13 (22.3) | 21.74 (15.7) | 19.91 (31.5)
horsel (58) || 34.07 (1) | 28.79 (35.3) | 32.86 (5.3) | 29.23 (57.7)
thyroidl (21) || 7.24 (7) 7.19 (8.9) 7.21 (8) 6.03 (16.3)
Problem T=15 T=20
NE pPCA DGHA NE pPCA DGHA
cancerl (9) 1.44 (4) 1.78 (4.6) 1.67 (5.6) 1.84 (6.3)
cardl (51) 16.8 (16.4) | 15.64 (51) | 16.4 (19.8) | 15.76 (51)
diabetesl (8) || 24.43 (8) 25.00 (8) 24.64 (8) | 25.00 (8)
glass (9) 3755 (6.8) | 32.07 (7.9) | 34.91 (7.4) | 32.26 (8.4)
heartl (35) || 22.52 (17.7) | 20.00 (34.2) | 21.13 (19.1) | 20.04 (35)
horsel (58) || 29.89 (27.3) | 30.66 (58) | 26.81 (32.4) | 29.56 (58)
thyroidl (21) || 6.78 (14) 5.87 (18) 6.73 (15) | 5.92 (19.8)
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Change of averaged mean dimensionality
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Figure: Change of averaged dimensionality and projection variances for NE pPCA (left)
and DGHA (right). = = 10.
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Comparison

o Layered Genetic Programming (FLGP) (Lin etal., 2008);

@ Recursive Feature Elimination combined with multi-layered neural network

(RFENN)

@ ...and support vector machines (RFESVM) (Windeatt, 2011).

Method cancerl diabetesl heartl
FLGP 2.24 (5.2) | 27.24 (6.1) | 22.40 (11.0)
RFENN 4.00 (7) 24.90 (2) 21.00 (27)
RFESVM 3.70 (7) 24.50 (3) 20.00 (18)
NE pPCA, 7 =15 || 1.78 (4.6) | 25.00 (8) | 20.00 (34.2)
DGHA, 7 =15 1.84 (4) 24.32 (8) 21.78 (18)

Table: Comparison of the test set classification errors (%) obtained using different
features selection methods for cancerl, diabetesl and heartl problems. Average

dimensionality of the resulting features space is given in brackets.
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Approximate eigenvectors

Ok, we can work with approximate covariance matrix eigenvectors. Sources of
inexactness:

@ Approximate methods to compute eigenvectors.

@ Inexact covariance matrix.
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Dynamical GHA with reduced data set

Initialization of the linear ANN without hidden nodes. The number of
outputs = required dimensionality.

Compute projections variances and remove output nodes, which satisfy to the
criterion (1).
Sample r% of the data from the training set to update ANN weights.

©0 o0 o

Update ANN weights. For each training sample:

m

B = 3 wile(o)

Awi(t) — n[y,-(t)x,(t)—yj(t)zwkmt)yk(r)],

@ If stopping criterion is failed go to Step 2.
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Change of projection variances (cancerl)
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a) 100% of data; b) 50% of data;
c) 25% of data; d) 10% of data.
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Speed-up VS Accuracy
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Speed-up VS Accuracy
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Change of averaged mean dimensionality
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Figure: Comparison of change of averaged features space dimensionality for cancerl,

diabetesl, glassl and heartl problems for DGHA with reduced data set (10%, left) and
with full data set (right). 7 = 10.
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Conclusion

Quite a simple proposition lead to:

@ Novel way for dynamical dimensionality reduction using inexact coordinates of
eigenvectors (pseudo-PCA).

@ NE pPCA — way of evolutionary training of ANN with tractable and understandable
results.

@ Dynamical modification of the GHA algorithm (DGHA).
@ Use of part of data to speed-up the GHA, DGHA and NE pPCA.
@ DGHA is much more practically useful than GHA and NE pPCA due to its speed.

W

Future Research:

© Parallelization of the NE pPCA. The most time consuming part is computation of
fitness (75-80% of time). Each individual can be evaluated in parallel.

@ Constraints for pPCA: use criteria from PCA and/or try to keep certain amount of
information when performing nodes removal.
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