
Neuroevolution: Randomness is the Simplest
Thing?∗

Yury Tsoy
yurytsoy@gmail.com

Comp. Eng. Dept., Tomsk Polytechnic Univ.
Dept. of Economic Math., Informatics and Statistics,

Tomsk State Univ. of Control Systems and Radioelectronics
Tomsk, Russia

June 26, 2012

Abstract

The paper describes results of the research of neuroevolutionary (NE)
algorithm with random scheme for selection of operators, which modify
weights and structure of evolving artificial neural networks (ANNs). Not
looking at the simplicity of the algorithm some already known heuristics
for improvement of efficiency of the NE algorithms are observed in result
of the algorithm analysis, for example: prevalence of weights mutation
over other operators; decrease of mutation probability over time; advan-
tage of using mutation of activation functions. Interestingly that some
novel heuristics are found as well: denial to use node removal operation;
adaptation of connections addition/removal depending on the initial ANN
size. It was also found that a limited growth of the number of nodes and
connections is inherent to neuroevolutionary algorithm and is quadratic in
most cases. One of the most unexpected outcomes of the research is that
analysis of usage of different mutation operators lead to an observation
that many non-connected problems share similar properties in the sense
of application of operator A after operator B, which gives strong hopes to-
wards creation of algorithms, which can transfer knowledge while solving
different problems. On top of that the algorithm was able to solve suc-
cessfully several known benchmark problems, including the Artificial Ant
problem (with 20% success rate), which is quite surprising for such a sim-
ple algorithm.

1 Introduction

When developing neuroevolutionary (NE) algorithms researchers often aim to
make as strong algorithm as possible from the very beginning. To achieve this
different heuristics can be introduced based upon researchers experience, ob-
servations, intuition and ad-hoc rules. A wide field for experimentation with

∗Tsoy Y. Neuroevolution: Randomness is the Simplest Thing? ANRG Report No. 1201. Tomsk
Polytechnic University, 2012.

1



such heuristics is the set of operators, which change structure and/or weights
of artificial neural network (ANN). Different parameters for operators can be
heuristically tuned like probability change over time, possible restrictions and
dependencies on current ANN structure. Traditionally more attention is paid
towards operators which involve growth of ANN structure complexity (growth
of the components number). The examples are:

• Setting low probability of a new node arrival. This is often done to pre-
vent fast growth of the number of nodes, because it brings multiple dis-
advantages, starting from making the ANN structure look more ”com-
plex”, and ending with growth of the problem dimensionality, since the
more the number of nodes, the more a size of the search space of neural
structures.

• Way of adding a new node. There are to widely used options: (a) add a
node with a couple of connections to make an immediate impact on ANN
functioning [27, 42]; and (b) insert a node into some connection [38]. Note
that these options do not consider adding isolated node, which is a pure
result of the ’Add Node’ operation, but prefer sort of ’macro’ operation,
which adds a node and connections into existing network.

Alike heuristics are basically intended to take into consideration a lot of
factors connected with: operators, which change ANN structure; evolutionary
search; problem at hand and its constraints. Nevertheless several successful
NE algorithms were developed ([27, 38, 36]), which got a broad range of inter-
esting theoretical and practical applications.

However in order to fully understand possibilities of modern NE algo-
rithms it’s necessary to find out what the simplest NE algorithm is capable for,
to take it as a reference. For now a lot of researches made, dedicated to study of
efficiency of evolutionary search for optimization of only neural weights [14]
or structure [22]. But no research is made involving simplest version of the
algorithm for simultaneous flexible evolution of structure and weights. Here
’flexible’ means possibility of obtaining any neural network starting from any
other network if these networks have the same set of inputs and outputs.

This paper concerns basic variant of NE algorithm with flexible search of
neural structures. The algorithm doesn’t use crossing and makes use of sev-
eral operators: add node, remove node, add connection, remove connection,
modify weight, modify activation. The operators, which change individual’s
ANN are picked at random and their acting is totally random. Surprisingly
that even this variant of neuroevolutionary algorithm can provide very inter-
esting observations like limited growth of neural structures’ complexity, and
possibility to share experience when solving different problems. And besides
it’ll be shown that even such a simple algorithm is able to solve several tradi-
tional benchmark problems of adaptive control and classification.

One more important and interesting question is creation of algorithms, which
can learn from their experience. Most current approaches when solving the
same problem multiple times will perform each run without knowledge of pre-
vious results. That is such algorithm can be said to have total amnesia. But all
living beings perform in different way. Solving one and the same task for many
times will eventually lead to improve of skills and knowledge and when faced
similar by novel problem these skills can be helpful.

2



There are a lot of approaches, among which is incremental learning [9, 11,
14, 16], but these approaches mostly consider gradual complexification/change
of the same problem or problem-dependent data over time, which means that
the solution is able to operate in dynamic environments, but only if these en-
vironments are known to this solution. Ultimate goal is to develop a meta-
learning approach, which will tell the learning algorithm how to learn solu-
tions to new problems on the basis of obtained results and past experience.

In this paper we also address this question of meta-learning and present
some results, which show that solving several completely different problem
domains can lead to similar data for meta-learning algorithm. It enables cre-
ation of the algorithm, which can look for solutions in totally unknown envi-
ronment using only its past experience without heuristics.

The paper is organized as follows. Sec. 2 gives a brief review on heuristics
for known NE algorithms to direct evolutionary search. Sec. 3 contains de-
scription of the algorithm and operators to change ANN structure and weights,
which are used for experiments. The experimental problems and parameters
settings are given in the Sec. 4, while Sec. 5 contains results of experiments
and their discussion. Conclusion outlines main results of the research and pays
some attention to the future research.

2 Brief Review of Heuristics for Neuroevolutionary
Algorithms

Below a brief review of some known heuristics to improve evolutionary search
and training of ANNs.

All heuristics can be decomposed into two classes:

1. Heuristics for finding weights of ANN.

2. Heuristics for finding structure of ANN.

One of well-known general heuristic for weights forces absolute values of
weights to lie within a small interval (e.g. [−0.1, 0.1]). This heuristics comes
from a general theory of neural networks, where low valued weights are of-
ten preferred to avoid nodes from working in ”saturated” regimes [17]. Those
regimes make nodes fire only values close to minimal and/or maximal possi-
ble, without any intermediate states, which makes the whole ANN either irre-
sponsible to input data changes, or otherwise very sensible (and thus unstable)
to slightest changes.

The other heuristic for weights employs the idea of decomposition of initial
problem into lesser subproblems. Each of these subproblems is solved sepa-
rately, for example, using coevolutionary approach [14].

Heuristics for structures of ANNs are met more often, probably, because
search of neural topologies is more sophisticated problem and there are major
differences from numerical optimization. First of all the space of structures is
non-differentiable and it’s generally hard to define the direction of the ”best”
change. This direction should tell what changes need to be applied to current
ANN to improve its performance.

To address the problem of search of neural networks structures various re-
strictions are introduced. For example, only multi-layered ANNs can be con-

3



sidered [31, 10, 41] and operations, which change its structure include adding
or removal of a new layer or nodes for a selected layer. Considering NE al-
gorithms with more flexible search of ANN topology, a popular trick is to
allow only growth of ANN structure [38, 37]. In other words new elements
(nodes and connections) are only added to the network, and there is no oper-
ator, which removes them. Some algorithms restrict growth by allowing only
feed-forward ANNs [28, 42, 41], which also limits range of problems, which
can be solved using obtained neural networks. In some algorithms the number
of hidden nodes and connections is limited from above to make sure that ANN
size won’t exceed this limit [2, 1, 10, 22, 25, 28], or as a variant the number of
connections per each unit can be fixed [27, 28].

For more precise guidance of the structure search, probabilities of different
operators are adjusted. It’s general to prevent too fast growth of number of
hidden nodes and connections. Typical choice is setting probability of adding
a new node much smaller than that of for adding a new connection or changing
connection weight [38]. In [20, 42, 34] different operators’ probabilities adapt
on the basis of their relative ’quality’, which is proportional to the fitness gain
obtained due to this operator over the last several generations. In [42] oper-
ators’ probabilities adapt to the structure of the underlying ANN, so that for
ANN without hidden nodes a probability to add a new node is higher, than,
for example, for ANN with 10 hidden units. Operators’ probabilities can also
be defined adaptively for each individual on the basis of the relative fitness of
this individual in the population [2, 30].

One interesting variant to guide search of ANN structure is aimed towards
adopting properties of real world complex networks, among which is a well-
known exponential distribution of nodes degrees, which is typical for scale-free
networks [4]. This property can be used like follows: when a new connection
is added, its beginning and ending nodes are defined based upon degrees of
nodes, so that nodes with higher degrees would have a larger probability to
get this connection [44]. Deletion of connections can be performed in vice versa
way: nodes with lower degrees will have higher probability to ”loose” a con-
nection. Selective removal of a connection can be alternatively implemented
using the concept significance of deviation of the connection weight from zero
[46].

If no restrictions on ANN structures are made, then appearance of ”ugly”
topologies is possible, alike the ones shown in the Fig. 1. The reason for this
topologies to be acknowledged unsuitable is twofold: (1) there are elements,
which do not affect neural output, however they participate in the compu-
tations performed by a network and thus increase overall computation com-
plexity; (2) unbalanced topologies are more tricky things, however they are
unlikely to be desired. In a few words, when we have chain of nodes, we
try to transform only one variable to extract as much information as possible.
However the processing would be more efficient if we could use information
from other processing steps and other variables, which requires shortcut con-
nections and neural nodes working in parallel. Thus ANN, where only a few
of possible connections are toggled on can be supposedly considered as net-
work, which misses some information. The latter doesn’t mean that chains of
nodes are always bad, but it argues, that such chains are generally not as good
as layered networks.

4



0

1

3

5

4

2

”Dead-end” and isolated nodes

0

1

43

5 6 2

”Unbalanced” structure

6

Figure 1: Example of bad structures, which can appear if no heuristic rules are
applied to regulate neural topologies.

3 Algorithm Description

The algorithm scheme which is used for this research is standard for evolu-
tionary populational algorithm except that no crossing is used and selected
individuals immediately proceed to mutation step (Alg. 1).

Algorithm 1 Algorithm’s scheme
1: Initialize population of n ANNs without hidden nodes and with all inputs

connected to all outputs.
2: Evaluate individuals.
3: Perform selection to pick n individuals using Tournament Selection with a

tour size = 5.
4: Mutate selected individuals. Individual’s fitness is evaluated each time the

mutation occurs to compute fitness change, implied by the mutation.
5: If stopping criterion is not satisfied then proceed to step 3.

The selective pressure was intentionally set high since this is a common
recommendation to make evolutionary algorithm work well [8].

3.1 Encoding

Each individual contains information about weights and structure of ANN and
types of activation functions for each non-input node (Fig. 2).

0

1

2

34
0.23 -1.5

4.79
-0.08

1.041 4
0.23

4 3
-1.5

2 3
-0.08

2 4
4.79

0 3
1.04

gene1 gene2 gene3 gene4 gene5

Beginning
node

Ending
node

Connection weight

Figure 2: Neural networks encoding used in the paper. Each ANN is encoded
directly by list of weighted connections.

Each node in ANN has its unique ID. Information about ANN structure is
stored as list of edges, for each its start and finish nodes’ IDs and weight are
provided. List of activation functions is stored separately, possible entries are

5



given in the Table 1. Default activation function is Sigmoid. All input nodes
has Identity activations.

Activation Formula
Identity f(x) = x
Linear f(x) = S

Sigmoid f(x) = 1

1 + exp(−aS)

Gaussian f(x) = exp

(
− ‖x−w‖

2a

)
Table 1: Activations, which can be used during the ANN evolution. S = wT x,
where w – node’s weight vector, x – input signals. a ∈ R

3.2 Operators

The following operators are used in the study:

1. Add Node. Adds isolated node. This operations has no immediate ef-
fect on individual’s fitness (neutral operation), but in some consequent
generation this node can be advantageous. Note also that even adding
connections to this node not obligatory lead to a fitness change, if there is
no other node in the network that accepts output signal of this node.

2. Remove Node. Removes random node regardless on the number of its
connections or feasibility of the ANN structure after this operation, that
is without respect to whether input signals are translated onto ANN out-
puts or not. Input and output nodes can not be removed.

3. Add Connection. Adds connection with random weight between two
randomly chosen nodes.

4. Remove Connection. Removes random connection from a network. If in
result some node becomes isolated, then this node is removed (’dying’).

5. Modify Weight. Changes weight of randomly chosen connection. The
weight is changed using uniform distribution on interval [wmin, wmax],
where wmin and wmax – minimal and maximal allowed random weight
values.

6. Modify Activation. Randomly changes activation function for randomly
chosen node. Can not change activation for input nodes.

It’s easy to see that these operators present baseline version of operators to
change structure and parameters of ANN. All operators behave at random and
doesn’t adapt to the structure of ANN or some other characteristics (like fitness
value, generation number and so on).

3.3 Operators Choice

Although quite a number of operators will be used, there is no scheme or
heuristic, to decide which operator to pick at the moment. When some in-

6



dividual ANN undergoes mutation always a random operator is selected to
act.

There is one feature though. For each individual (NI ∗NO) mutation events
are gambled, each firing with Pm probability, where NI and NO – are number
of inputs and outputs of ANN correspondingly, and Pm is a mutation proba-
bility. This is done in order to follow ”standard” bit-wise mutation concept:
individual can mutate several times, dependent on the problem’s size. Note
that (NI ∗NO) is exactly the number of connections in the initial ANNs, but at
later evolution steps number of connections can change, however this coeffi-
cient doesn’t adapt.

It is worth noting, that no restrictions is set to limit the operators acting,
thus any kind of ANN topology (feed-forward or recurrent) can evolve, both
growing and shrinking networks are considered and the number of nodes and
connections can be arbitrary.

4 Experiments Description

The main goal of the experiments is to define what kind of new knowledge
can be extracted from analysis of one of the simplest versions of the NE algo-
rithm and how this information can be used. The other objective is to find out
whether discovery of already known heuristics for evolution of neural struc-
tures can be made on the basis of analysis of the algorithm with random oper-
ators selection scheme.

To find this out, we’ll track average number of nodes and connections in
evolving neural networks. For more detailed analysis of operators the algo-
rithm also writes log of changes that happened to the best found solution start-
ing from the very 1st generation. It is assumed that list of operators, that caused
those changes, carries important information on relative utility of each opera-
tor and probably on the possible successful sequences (’macro-operations’) of
those operators. Each entry in the list of changes will store:

• Name of the operator.

• Change of fitness, caused by the operator.

• Generation, at which the entry was created.

Having list of changes for the best individual the following parameters will
be analyzed:

• Min, max, mean and variance of fitness change, caused by the operator.

• Usage of the operator over time (was the operator useful at the beginning
only or it was used during the whole run?).

• Rate of successful transitions from operator 1 to operator 2 to understand
if some information on the useful sequences of operators can be obtained.

Note that the analysis of the best individual can be noisy comparing to the
analysis of each individual in the population because depends much on the
initialization, random factors etc. However since EA converges to one solution
(unless some special methods for maintaining diversity are applied) it can be

7



suggested that in the final generation all the population will contain very sim-
ilar individuals with very subtle differences in changes lists. This can be over-
came by implementing Island Model for EA [12] or by adding niching schemes
[19] or other techniques to encourage diversity, but is subject to a whole new
research.

Ultimately when aiming at creation of the algorithms, which are able learn
from their experience, the desired feature is ability to learn from a single run.
That is if the algorithm manages to find small, but useful information how to
perform better in the future from a single experiment, then this could meant
that the algorithm has better abilities to learn. In many cases making repeating
experiments can be costly or undesired for some reason thus this ability to learn
using a small amount of data can be very powerful. It’s also remarkable, that
one of the current problems in machine learning concerns learning using small
training set, which underpins the actuality of extraction of new knowledge in
’data-limited’ situations.

Moreover when talking about utility of different mutation operators a sin-
gle run can be enough because the operators are used many times during this
run, that is why it is still possible to gather informative data.

Below the problems are described, which were used for experimental re-
search of the baseline variant of the NE algorithm. For each problem we’ll
specify number of inputs and outputs and describe them.

4.1 XOR

This is a classification problem where ANN is to be trained to implement log-
ical eXclusive OR operation. The difficulty here is that the problem is not
linearly separable and thus hidden nodes are required to solve this problem.
However one hidden node is enough [38]. To solve this problem ANN had 2
binary inputs for each variable and 1 continuous output. The evolution dura-
tion is 10000 generations.

4.2 Artificial Ant

In this problem artificial ant is considered to be placed in a 37 × 37 toroidal
world with eatable pellets placed in a special order (Santa Fe trail [23], Fig.
3). The ant is given 400 steps and thus can not explore the entire world and
hence should behave ”smarter”. ANN to control the ant had 4 inputs and 3
outputs, all continuous, described in the Table 2. The evolution duration is
10000 generations.

4.3 2-Poles Balancing

This is a standard adaptive control benchmark problem, in which ANN should
control a cart, moving along a rail, to prevent falling of 2 poles of different
length and mass, which are positioned on the cart [40]. The poles can sway
back and forth and if a pole’s angle from vertical position exceeds some thresh-
old the task is considered failed. The 2-Poles Balancing problem requires suc-
cessful control for 100k simulated time steps. Inputs and outputs description
for this problem is given in the Table 3. The evolution duration is 10000 gener-
ations.

8



Input/Output Description
Input #1 Is there a food ahead? (yes/no)
Input #2 Output #1 at previous time step
Input #3 Output #2 at previous time step
Input #4 Output #3 at previous time step

Output #1 Action ”Move Forward”
Output #2 Action ”Turn Left”
Output #3 Action ”Turn Right”

Table 2: Description of neural inputs and outputs for the Artificial Ant problem

Input/Output Description
Input #1 Cart’s position
Input #2 Cart’s velocity
Input #3 1st pole angle
Input #4 1st pole angular velocity
Input #5 2nd pole angle
Input #6 2nd pole angular velocity

Output #1 Controlling action with continuous value to move the cart

Table 3: Description of neural inputs and outputs for the 2-Poles Balancing
problem

4.4 Proben1 problems

The Proben1 benchmark problems set was proposed by L. Prechelt [32]. This
set includes several classification and approximation problems most of which
initially taken from the UCI repository database [29] and is created to pro-
vide more appropriate comparison of different classification and approxima-
tion methods. This is obtained due to preprocessing of all the data made by
Prechelt and by explicit division of data into training, validation and test sets,
so that any algorithm trained on some data set would use the same training
samples and would be tested on the same test set. Thus any algorithm is work-
ing in the same conditions and the only thing to compare is an algorithm’s
accuracy. Table 4 contains some information on the used problems. The evolu-
tion duration is 1000 generations.

5 Results of Experiments

5.1 Growth of ANN structure

The first important questions are how and how fast the number of nodes and
connections changes when no heuristics or restrictions to neural structure are
applied. Change of these parameters over time for different problems is shown
in Fig.4 and 5.

The plots show that growth of the number of nodes and connections is
rather small, even though it is not restricted from above and probability to
add a new node was the same as that of other mutation operators. Note that

9



Figure 3: Visualization of the ant world known as ”The Santa Fe Trail”. Cross
depicts initial position of the ant, food pellets are shown by black circles and
optimal path is plotted by grey line.

at most cases the growth is almost quadratic. It’s remarkable that coefficients
at 3rd and 4th order variables for polynomial fitting equations are very small
and even the 2nd order coefficients are less than 0.001. This allows to propose
that ANN growth may be not a major problem, due to inherent self-restriction
of the algorithm. Some possible causes of this self-restriction feature are dis-
cussed in the subsequent sections.

Sometimes a number of connections grows faster than that of nodes, which
is rather natural, because when a new node is added the number of poten-
tial connections in the ANN grows proportionally to the square of the overall
number of nodes. Sometimes the contrary was observed: the number of nodes
grown faster then that of connections. Since the nodes are added without con-
nections, it can be assumed that there were a lot of isolated (’silent’) nodes,
which did not not participate in ANN functioning, but could be used in the
future. This circumstance (neutrality of the node addition) makes the probabil-
ity to add a new node rather high, since this operation doesn’t damage current
ANN, but the situation can change if the node is added with connections with
non-zero weights, i.e. if different operator for adding a node is used.

For some problems a number of connections reduces at the beginning, while
for the other problems this parameter growths. Reduction of the connections
number at the start of a run is observed for the problems with large initial num-
ber of connections, thus it seems that if the number of parameters is large, the

10



Problem’s Name Inputs Classes Training/Validation/Test Samples
cancer1 9 2 350/175/174
card1 51 2 345/173/172

diabetes1 8 2 384/192/192
glass1 9 6 107/54/53
heart1 35 2 460/230/230
horse1 58 3 182/91/91

thyroid1 21 3 3600/1800/1800

Table 4: Problems from the Proben1 set which are used in experiments. Num-
ber of inputs and outputs as well as samples in the training, validation and test
sets are given for each problem.

algorithm tries to reduce it, without any ’built-in’ heuristics! Hence the first
found heuristic is If the number of connections at the beginning is large, then try to
remove connections. Otherwise, try to add a connection or node.

5.2 Analysis of operators utility

We’ll assume that operator is more useful if its application involves better change
of fitness1. To estimate utility of operators, that change neural structure, the
statistics for the changes induced by different operators was gathered for the
best individual. Range plots, showing minimal, maximal and mean change of
the fitness for different problems are shown in Fig. 6 and 7. The results were
averaged over 10 runs.

The following notation is used: ”+Node” – add node; ”-Node” – remove
node; ”+Conn” – add connection; ”-Conn” – remove connection; ”Act” – change
activation function; ”Weight” – change connection weight.

Several interesting conclusions can be made from these plots. First of all the
information on operators utility can differ significantly for different problems,
which seems obvious. However in existing NE algorithms inherent heuristics
concerning operators’ usage do not change from one problem to another, al-
though parameters setting may differ. This means that adaptive NE algorithms
should be able vary heuristics by itself (self-adaptation) based upon their per-
formance on the underlying problem.

Change of activation (underestimated by many researchers) can be very
useful, which can be seen by large fitness change, observed after activation
was changed, for many problems. For several problems mutation of activa-
tions for the best individual lead by chance only to positive changes (cancer1,
card1, XOR). And there were problems, for which change of activation didn’t
produce any remarkable changes of fitness (see glass1 and Artificial Ant prob-
lems). Nevertheless, a heuristic can be formulated about utility of mutation of
activation. It’s worth noting that there are only few NE algorithms for flexible
evolution of neural networks or analogous structures, which allow change of
activation functions [27, 37, 44].

Probably the most intriguing observation concerns operator for removal

1Here ”better” means larger for maximization problems and smaller for minimization prob-
lems.

11



cancer1
Avg. Nodes = 1,878+0,0576*x-2,1353E-5*x^2

Avg. Conns = 16,5013+0,0477*x-2,2857E-5*x^2

1 83 165 247 329 411 493 575 657 739 821 903 985
Generations

-5
0
5

10
15
20
25
30
35
40
45

Avg. Nodes
Avg. Conns

card1
Avg. Nodes = -1,1234+0,0916*x-3,9248E-5*x^2

Avg. Conns = 101,0858-0,1971*x+0,0009*x^2-1,6092E-6*x^3+1,3704E-9*x^4
-4,4167E-13*x^5

1 83 165 247 329 411 493 575 657 739 821 903 985
Generations

-20

0

20

40

60

80

100

120

Avg. Nodes
Avg. Conns

diabetes1
Avg. Nodes = -1,1732+0,1208*x-0,0002*x^2+2,5794E-7*x^3-1,0139E-10*x^4
Avg. Conns = 12,0319+0,0859*x-0,0001*x^2+1,1117E-7*x^3-3,5453E-11*x^4

1 83 165 247 329 411 493 575 657 739 821 903 985
Generations

-5
0
5

10
15
20
25
30
35
40
45

Avg. Nodes
Avg. Conns

glass1
Avg. Nodes = 0,5601+0,0768*x-3,4169E-5*x^2

Avg. Conns. = 49,8757-0,0274*x+0,0002*x^2-2,0097E-7*x^3+7,463E-11*x^4

1 83 165 247 329 411 493 575 657 739 821 903 985
Generations

-10

0

10

20

30

40

50

60

70

Avg. Nodes
Avg. Conns.

heart1
Avg. Nodes = -1,0677+0,0873*x-3,1598E-5*x^2

Avg. Conns. = 65,378-0,0112*x+0,0001*x^2-1,9487E-7*x^3+8,2407E-11*x^4

1 83 165 247 329 411 493 575 657 739 821 903 985
Generations

-10
0

10
20
30
40
50
60
70
80
90

Avg. Nodes
Avg. Conns.

horse1
Avg. Nodes = -4,0727+0,1195*x-2,909E-5*x^2

Avg. Conns. = 175,9998-0,3522*x+0,0012*x^2-1,3519E-6*x^3+5,5142E-10*x^4

1 83 165 247 329 411 493 575 657 739 821 903 985
Generations

-20
0

20
40
60
80

100
120
140
160
180
200

Avg. Nodes
Avg. Conns.

Figure 4: Change of average number of nodes and connections with fitting
curves for problems from the Proben1 test set. On each plot time is shown
along the horizontal axis and the number of nodes and connections – along
vertical axis. Results are averaged over 10 runs.

of nodes. Interestingly that there are no stats for this operation, that is this
operator was never applied to the best individual, although the number of calls
of this operator was approximately the same as for other ones2. This fact is
probably due to too large destruction, which is caused by node removal. This
experimentally proves ignorance of the use of node removal operation, which
can be seen in a popular algorithms like NEAT and HyperNEAT [38, 37]. Note,
however, that these algorithms do not use this operator for another reason,
namely, to consider only growing ANNs to reduce the size of a search space.
Anyway the heuristic for denial of node removal is found here.

Although all these conclusions were obtained by analysis of the best in-
dividuals in population, they should hold in general because EA tend to con-
verge to a single solution, unless special techniques for maintaining of diversity

2Due to equal chances for each operator to be chosen to perform mutation.

12



2-Poles
Avg. Nodes = 4,2851+0,0336*x-1,2521E-5*x^2+2,662E-9*x^3-2,5904E-13*x^4

+9,1343E-18*x^5
Avg. Conns = 10,3818+0,0212*x-8,6806E-6*x^2+1,8542E-9*x^3-1,7623E-13

*x^4+5,9992E-18*x^5

1 1204 2407 3610 4813 6016 7219 8422 9625
Generations

-10
0

10
20
30
40
50
60
70
80

Avg. Nodes
Avg. Conns

XOR
Avg. Nodes = 4,3279+0,0184*x-4,2758E-6*x^2+4,7365E-10*x^3-1,8569E-14

*x^4
Avg. Conns. = 4,6177+0,0114*x-2,5266E-6*x^2+2,5456E-10*x^3-9,0336E-15

*x^4

1 1204 2407 3610 4813 6016 7219 8422 9625
Generations

-10

0

10

20

30

40

50

60

Avg. Nodes
Avg. Conns.

Artificial Ant
Avg. Nodes = 4,0982+0,0377*x-7,5334E-6*x^2+7,8887E-10*x^3-2,9027E-14

*x^4
Avg. Conns. = 18,0709+0,0288*x-6,5764E-6*x^2+7,1354E-10*x^3-2,702E-14

*x^4

1 1204 2407 3610 4813 6016 7219 8422 9625
Generations

-20
0

20
40
60
80

100
120
140

Avg. Nodes
Avg. Conns.

Figure 5: Change of average number of nodes and connections with fitting
curves for XOR, 2-Poles Balancing and Artificial Ant problems. On each plot
time is shown along the horizontal axis and the number of nodes and connec-
tions – along vertical axis. Results are averaged over 10 runs.

are applied.

5.3 Operators usage over time

Other interesting findings can be obtained via analysis of the number of usage
of different operators at different stages of evolutionary search using the best
individual statistics. That is when the algorithm stopped, the number of us-
ages of each operator, ever applied to the best individual during the evolution
was analyzed. Figures 8 and 9 show histograms for usage of operators during
different periods of time.

It’s clear that for many cases operator for mutation of weights prevails over
others or at least among top-used operators. For some problems (card1, heart1
and horse1) this operator is used twice as often as the operator ranked second,
while for other problems (cancer1, diabetes1, glass1) this advantage is not so
large and tend to decrease over time. Anyway the heuristic for more frequent
usage of weights mutation can be stated. This seems to be very natural because
weights mutations allow fine tuning of ANN parameters and more detailed
testing of existing topology, while changes of structure often lead to significant
changes of ANN properties and performance.

Interesting observation is that more frequent use of weights mutation seems
inherent to the solutions for classification problems, while it seems that for
other problems structural changes are more important. The suggestion can
be made, that for classification problems change of ANN weights leads to mi-

13



cancer1

+Node -Node +Conn -Conn Act Weight
-0,026

-0,022

-0,018

-0,014

-0,010

-0,006

-0,002

0,002
card1

+Node -Node +Conn -Conn Act Weight
-0,012

-0,010

-0,008

-0,006

-0,004

-0,002

0,000

0,002

diabetes1

+Node -Node +Conn -Conn Act Weight
-0,016

-0,012

-0,008

-0,004

0,000

0,004

0,008

0,012
glass1

+Node -Node +Conn -Conn Act Weight
-0,06

-0,04

-0,02

0,00

0,02

0,04

0,06

heart1

+Node -Node +Conn -Conn Act Weight
-0,012

-0,010

-0,008

-0,006

-0,004

-0,002

0,000

0,002

0,004

0,006
horse1

+Node -Node +Conn -Conn Act Weight
-0,020

-0,015

-0,010

-0,005

0,000

0,005

0,010

0,015

0,020

XOR

+Node -Node +Conn -Conn Act Weight
-0,12

-0,08

-0,04

0,00

0,04

0,08

0,12

Figure 6: Utility of operators for minimization problems shown as averaged
change of fitness, involved by application of correspondent operator. Minimal,
maximal and mean fitness changes are plotted averaged over 10 runs.

nor changes of functionality (the number of correctly classified objects or mean
squared error of ANN output tend to change slightly), while for control and
adaptive behavior problems wrong action can ruin all other consequent ac-
tions. In other words, for the classification problems current ANN functioning
doesn’t depend on previous ANN responses, while for many control problems

14



2-Poles Balancing

+Node -Node +Conn -Conn Act Weight
-40

-30

-20

-10

0

10

20

30

40
Artificial Ant

+Node -Node +Conn -Conn Act Weight
-80

-60

-40

-20

0

20

40

60

80

Figure 7: Utility of operators for maximization problems shown as averaged
change of fitness, involved by application of correspondent operator. Minimal,
maximal and mean fitness changes are plotted averaged over 10 runs.

this is crucial. For example in the Artificial Ant problem if the ant made a sin-
gle wrong movement, then all other movements should be corrected, otherwise
the ant will follow a wrong course.

For the XOR problem generation of the last improvement of the best indi-
vidual was equal to 10. It means, that the best solution wasn’t improved since
then even though the runs lasted for 10000 generations. As a result the solu-
tion for this problem was not found and this means, that lack of improvements
of the best individual indicates stagnation of a search, which was observed
by many other researchers and lead to creation of the restarts strategy, see for
example [3, 6, 21, 13, 35].

The other observation is that total number of mutations that lead either to
improvements of the best solution or to slight fitness reduction tend to decrease
over time. This decrease can be linear or exponential (see histograms for the 2-
Poles Balancing or Artificial Ant problems). Related effect was observed many
times in evolutionary algorithms, which lead to the heuristic for reduction of
the probability of mutation over time [18, 3, 30]. Here it is shown that reduction
of probability of a successful mutation is inherent to the neuroevolutionary
search.

Note also that similar research for more sophisticated probabilistic scheme
of operators selection was described in [20, 34]. Their results show that opera-
tors’ utility varies over time depending on the state of the search process. It’s
remarkable that curves describing change of operator selection probability de-
pend on the problem, which underpins necessity for adaptation of operators’
probabilities. Experimental results show that node deletion has relatively low
probability during almost the entire search, and this agrees with our finding
of low utility of this operator. On the other hand weight mutation operator
significance was lower than that of in our experiments. But in the research
presented in [20, 34] different set of operators was considered and the analysis
was performed for the entire population, not only for the best individual, so
that poorly fitted individuals could also contribute to the obtained plots and
graphs.

15



cancer1

100 200 300 400 500 600 700 800 900 1000

Generation bins

0

50

100

150

200

250

300

350
N

o 
of

 o
bs

+Node
+Conn
-Conn
Act
Weight

card1

0 100 200 300 400 500 600 700 800 900 1000

Generation bins

0

100

200

300

400

500

600

N
o 

of
 o

bs

+Node
+Conn
-Conn
Act
Weight

diabetes1

0 100 200 300 400 500 600 700 800 900 1000

Generation bins

0

50

100

150

200

250

300

N
o 

of
 o

bs

+Node
+Conn
-Conn
Act
Weight

glass1

0 100 200 300 400 500 600 700 800 900 1000

Generation bins

0

50

100

150

200

250

300

350

400

N
o 

of
 o

bs

+Node
+Conn
-Conn
Act
Weight

heart1

100 200 300 400 500 600 700 800 900 1000
Generation bins

0
50

100
150
200
250
300
350
400
450
500

N
o 

of
 o

bs

+Node
+Conn
-Conn
Act
Weight

horse1

100 200 300 400 500 600 700 800 900 1000
Generation bins

0

100

200

300

400

500

600

N
o 

of
 o

bs

+Node
+Conn
-Conn
Act
Weight

Figure 8: Usage of operators over time for the Proben1 problems. Operators
notation from the previous figures applies. Results are averaged over 10 runs.

5.4 Analysis of Successful Operators Transitions

After understanding that number of usages of different operators and their
utility vary over time it is interesting to find out whether sequences of oper-
ators are possible? In other words the traditional NE algorithm applies op-
erators one-by-one without remembering, which operator was applied at the
previous step. However selection plays the role of a filter, to choose which
operators make successful improvements and which do not. The individu-
als, which were selected, do not have entirely random history of changes, due
to selective pressure, thus a hypothesis can be made that there should be sta-
ble sequences of application of operators (analogous to high-level macroses or
templates).

To check this hypothesis an analysis of successful application of operators
was made with respect to operators, acted at the previous time step. For exam-

16



2-poles

500 1000 1500 2000 2500 3000 3500 4000
Generation bins

0

20

40

60

80

100

120
N

o 
of

 o
bs

+Node
+Conn
-Conn
Act
Weight

XOR

1 2 3 4 5 6 7 8 9 10
Generation bins

0
1
2
3
4
5
6
7
8
9

N
o 

of
 o

bs

+Node
+Conn
-Conn
Act
Weight

Art. ant

200 400 600 800 1000 1200 1400 1600
Generation bins

0

20

40

60

80

100

120

140

N
o 

of
 o

bs

+Node
+Conn
-Conn
Act
Weight

Figure 9: Usage of operators over time for the 2-Poles Balancing, XOR and
Artificial Ant problems. Operators notation from the previous figures applies.
Results are averaged over 10 runs.

ple, suppose that some individual has the following history of changes (mini-
mization problem is considered):

Operator Name Fitness change Generation
+Node 0 2
Weight −6.73E − 06 3
Weight 7.24E − 06 5
-Conn −0.01 6
+Node 0 7
+Node 0 7

Act 0 7
Weights −1.28E − 06 7
+Conn 0 9
Weight −4.02E − 05 9
-Conn 3.79E − 05 11

where the first column contains operator name, the second column shows fit-
ness change implied by the operator and the last column contains a time label.
It can be seen that there were advantageous (negative fitness change), harmful
(positive fitness change) and neutral operations. From this history log we can
extract sequences of operations of length 2 to judge their utility via average
change of fitness and the number of successful outcomes. For example, the
sequence

+Node→Weight

17



is met only once with 1.0 probability of success, while

Weight→ −Conn

is met twice and was successful with probability 0.5.
Having much larger history of changes, obtained after hundreds and thou-

sands of generations spend to solve some problem, it is possible to obtain more
reliable statistics to build a more reliable matrix of successful transitions, which
shows the probability of successful application of operator A if operator B
acted the last time. Visualization of such matrices, showing averaged probabil-
ities of successful transitions for each pair of operators for the best individuals,
is shown on Fig. 10.

Figure 10: Visualization of transitions matrices for different problems. For each
subpicture probability of successful transition are shown with respect to the
previous operator, which modified ANN. Green color marks lower probabil-
ity, and red marks higher probability. Scales for sub-pictures are independent.
Results are averaged over 10 runs.

The most surprising result is that successful transitions have similar dis-
tributions even though the problems are different. In the majority of cases
weights mutation has the largest probability of success. Absence of informa-
tion for the node removal can be explained by the same fact as earlier: this op-
erator wasn’t used by a single best solution. From this observation one more
heuristic can be proposed: Solving of different problems by neuroevolutionary algo-
rithm can have a lot in common3.

3Note that in the Subsec. 5.2 an observation was made that operators utility change from one

18



This heuristic encourages creation of NE algorithms with incremental and
life-long learning and transfer of algorithm’s past experience to novel problem
domains. It’s worth noting that some successful research in this direction is al-
ready made [14, 39, 45], but this area is obviously among the most unexplored,
since there is no correspondent working algorithm or concept in any field of
AI. This domain seems to be of great importance to create truly adaptive algo-
rithms, which could adapt not only during their run, but also between runs by
analyzing obtained performance to ”mine” new possible regularities and rules.

One non obvious outcome from analysis of transitions matrices is that re-
moval of connection was more successful than addition of connection. This
could be one of the causes to hold growth of the network size, observed in the
Section 5.1. Hence simplification of neural structures can be one more inherent
property of NE algorithms.

There is one case, which stands aside. Transitions probability obtained by
solving XOR problem is very different from the others. This can be rather
easy explained by the fact, that for this problem evolution of the best solu-
tion stopped after 10th generation (see Fig. 9), thus too few information was
available to produce more reliable statistics on successful probability of transi-
tions. It also indicates that transition matrix can vary over time depending on
the state of the evolutionary search.

To prove this resetting of parameters was made to increase mutation prob-
ability to encourage more active search of solutions. In results an ANN was
evolved, which successfully solved the XOR problem. Its successful transi-
tions probability matrix is visualized at Fig. 11. It is clear that the new matrix
has similar traits to other matrices.

Figure 11: Visualization of successful transitions matrix for the ANN which
eventually solved the XOR problem. Note similarities with most matrices at
Fig. 10.

problem to another, which seems contradictory to the heuristic just stated. However, there’s no
contradiction, since large operator utility doesn’t imply high usage rate and vice versa high prob-
ability of successful application of operator A after operator B doesn’t tell anything about average
change of fitness due to these operators.

19



5.4.1 Transferring experience between runs

Obtained experimental observations and findings lead to an extremely inter-
esting question: if one got data on successful run of NE algorithm, can this
data be applied to obtain many successful runs? In other words this question
concerns possibility of self-learning of NE algorithm between runs.

To address this question we tried to use successful transitions matrix for
XOR problem, shown in Fig. 11, to pick operators for other runs instead of
purely random selection of operators. The algorithm for selection of operators
is shown by Alg. 2.

Algorithm 2 Selection of operators using successful probability matrix
1: T←matrix of successful transitions probabilities.
2: Op−1 ← operator acted last
3: v ← vector of transitions probabilities extracted from T corresponding to

Op−1

4: v ← v + 0.1 {Increase each element in v by 0.1 to enable selection of oper-
ators with 0 probability.}

5: v← (
∑

i vi)
−1v {Normalize probabilities.}

6: Op← operator selected according to the distribution v.

However such trials did not lead to success and behaved not better than all
previous unsuccessful runs. Some probable reasons for this:

1. Different initialization of weights.

2. Transitions matrix is averaged over the whole search period and gives
only the generalized probabilities of successful transitions. It is well-
known that evolutionary algorithm run undergoes several stages [7, 33]
and at these stages different properties are required, thus the algorithm
should track applicability of the pre-defined matrix of successful transi-
tions to decide whether it should be used. Moreover in [20] it was shown
that for different problems different dynamics of operator probabilities
should be employed.

3. This argument is inspired by the Bayesian decision making: there is a
need to track operators utilities during the run (”online”). The rule for
selection of operators should rely not only upon conditional probability
of success, but also on some measure for applicability of previous opera-
tor, like frequency of successful actions in the past.

What is important here is not the inability to repeat good result using infor-
mation from the previous successful run using some simple approach. More
important is that this problem requires much deeper study and should not be
taken easily.

5.5 Testing the algorithm

Even though the algorithm, which is used in this study wasn’t designed to
achieve maximal performance, but rather to study effects of randomness of
operators selection, it is interesting to compare it with other algorithms. The

20



results of solving classification problems from the Proben1 problems are given
in the Table 5, the ”heuristicless” NE algorithm under study is referred as NE0.

Table 5: Comparison of the test set classification errors (%) for the Proben1
problems obtained using different approaches. ANN – results for ”standard”
training of ANN using RPROP algorithm [32]; GA – training of ANN weights
using Genetic Algorithm [5]; pPCA – results for training of ANN with neu-
roevolutionary dimensionality reduction [43].

Problem ANN GA pPCA NE0

cancer1 (9) 1.38 1.24 1.78 4.02
card1 (51) 14.05 14.27 15.64 14.77

diabetes1 (8) 24.10 23.70 25.00 30.63
glass1 (9) 32.7 47.62 32.07 53.23

heart1 (35) 19.72 21.87 20.00 21.26
horse1 (58) 29.19 26.44 30.66 27.36

The comparison results show that even the algorithm with the simplest
scheme of operators selection can perform on a par with more sophisticated
methods. For three problems, cancer1, diabetes and glass1, results of NE0 were
worse, however for cancer1 rather good result was obtained, and for diabetes1
and glass1 problems all other algorithms didn’t show outstanding results ei-
ther.

Artificial Ant problem was solved in 20% of runs, which means that the
ANNs were found, which managed to gather all 89 pellets. This is rather sur-
prising because this problem is considered hard in the genetic programming
society [24, 26]. The worst result for found solutions in unsuccessful runs was
71 pellet.

2-Poles Balancing and XOR problems were hard nuts to crack for the NE0

algorithm. Probably this could mean that these two problems can not be solved
by ”heuristicless” algorithm. A hypothesis can be made that in order to solve
these problems successfully the algorithm should support ”chains of improve-
ment”. That is if the ANN has a structure, with which the solution is impos-
sible, then successful change might present a sequence of operations, which
should not be broken by other mutations. This chain can potentially include
operations that reduce the solution’s performance or at least doesn’t improve
it. In the XOR problem ANN without hidden nodes can not be a solution, be-
cause at least one hidden unit is required with proper connections and weights.
For the algorithm, which is studied in this paper, multiple mutations are nec-
essary to construct a network, which could be elaborated to such a solution,
and it takes several generations because at each generation only not more than
2 mutations take place per each individual (see Section 3.3 for details). So the
chance for such an improvement is negligible and this can explain the failure
to solve the XOR problem.

As for the 2-Poles Balancing problem a deeper study is required, but a sug-
gestion can be made that obtaining a solution requires temporal deterioration
of the current one, which is also discouraged by the algorithm under use. I.e.
probably the same ”chains of improvement” issue takes place. It is possible
to guard new solutions even if they show worse performance, for example, by
prohibiting other individuals to compete with them as it’s done in the NEAT

21



algorithm [38].
Anyway the fact that the algorithm with purely random selection of opera-

tors was able to show quite a modest performance is surprising by itself.

6 Conclusion

Not looking at the simplicity of the algorithm under study the following heuris-
tics and observations were found, some of which are new and wasn’t found in
the literature:

1. If the number of connections at the beginning is large it’s worth to remove
some of them. Otherwise, the new connection or node should be added.

2. Mutation of activation function is an advantage.

3. Operator, which removes nodes, is at least not obligatory.

4. Weights mutation should be used more frequently than other operators.

5. It is shown that reduction of probability of a successful mutation is inher-
ent to the neuroevolutionary algorithms.

The found heuristics show that basic variant of the NE algorithm with flexible
search of ANN structures is quite ”intelligent” by itself. Nevertheless there’s
always a room for improvement by adding more powerful heuristics, which
will enforce the inherent properties.

Another remarkable observation concerns matrices for probabilities of suc-
cessful application of operators (transitions matrices) obtained for different
problems. Not looking at differences of those problems the matrices structures
look very similar although variation in absolute values can be rather large. It is
important that a transition matrix changes during the algorithm run and lack
of statistical information leads to large differences in probabilities of operators
success. A quick trial to use transition matrix from a successful run to pro-
duce more successful results failed, which clearly indicates that the problem of
life-long learning of NE algorithm and reusability of the run outcomes requires
much deeper study and should not be taken easily.

Another interesting observation concerns the Artificial Ant problem. This
problem is considered hard, however it was successfully solved by a very sim-
ple neuroevolutionary algorithm, although the reliability was not large (20 %).

The crossover operator wasn’t used in this research, although there are
ways to cross neural networks with different structures [15, 22, 27, 38, 42, 44].
Use of crossover will most likely change the results and probably some con-
clusions and found heuristics, because frequency of operators usage and other
theirs stats would obviously be dependent on crossover results. This can be an
interesting task for a future research.

7 Acknowledgments

This research was partially supported by the Russian Foundation for Basic Re-
searches (projects no. 11-07-00027-a and 12-08-00296-a).

22



References
[1] J. H. Ang, K. C. Tan, and A. Al-Mamun. Training neural networks for classification

using growth probability-based evolution. Neurocomputing, 71(16-18):3493–3508,
October 2008.

[2] P.J. Angeline, G.M. Saunders, and J.B. Pollack. An evolutionary algorithm that con-
structs recurrent neural networks. IEEE Transactions on Neural Networks, 5(1):54–65,
1993.

[3] A. Auger and N. Hansen. A restart cma evolution strategy with increasing pop-
ulation size. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC
2005, pages 1769–1776, 2005.

[4] Albert-Laszlo Barabasi. Linked: How Everything Is Connected to Everything Else and
What It Means. Plume, 2003.

[5] F.Y. Barrera. Busqueda de la estructura optima de redes neurales con algoritmos
geneticos y simulated annealing. verificacion con el benchmark proben1. Inteligen-
cia Artificial, Revista Iberoamericana de Inteligencia Artificial, 11(34):41–61, 2007.

[6] Giuseppe Cuccu and Faustino Gomez. Novelty restarts for evolution strategies. In
Proceedings of the 2011 Congress on Evolutionary Computation (CEC 2011)., 2011.

[7] Kenneth De Jong. An analysis of the behavior of a class of genetic adaptive systems. Doc-
toral dissertation, University of Michigan, Ann Arbor, 1975. University Microfilms
No. 76-9381, 1975.

[8] Kalyanmoy Deb and Samir Agrawal. Understanding interactions among genetic
algorithm parameters. In Foundations of Genetic Algorithms 5, pages 265–286. Mor-
gan Kaufmann, 1999.

[9] R. Elwell and R. Polikar. Incremental learning of concept drift in nonstationary
environments. IEEE Transactions on Neural Networks, 22:1517–1531, 2011.

[10] D. B. Fogel. Using evolutionary programming to create neural networks that are
capable of playing tic-tac-toe. In International Conference on Neural Networks, pages
875–880, San Francisco, CA, 1993. IEEE Press.

[11] Glenn Fung and Olvi L. Mangasarian. Incremental support vector machine classi-
fication. In Proceedings of the 7 th ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, 2001.

[12] David E. Goldberg. Sizing populations for serial and parallel genetic algorithms.
In Proceedings of the Third Internation Conference on Genetic Algorithms, pages 70–79,
1989.

[13] Faustino Gomez. Robust Non-Linear Control through Neuroevolution. PhD thesis,
Department of Computer Sciences, 2003.

[14] Faustino Gomez and Risto Miikkulainen. Incremental evolution of complex gen-
eral behavior. Adaptive Behavior, 5:317–342, 1997.

[15] F. Gruau. Neural network synthesis using cellular encoding and the genetic algorithm:
Unpublished PhD thesis. PhD thesis, lUniversite Claude Bernard, Lyon, 1994.

[16] S.U. Guan, Y. Qi, and C. Bao. An incremental approach to mse-based feature selec-
tion. International Journal of Computational Intelligence and Applications, 6(4):451–471,
2006.

23



[17] Simon Haykin. Neural Networks: A Comprehensive Foundation (2nd Edition). Prentice
Hall, 1998.

[18] J. Hesser and R. Manner. Towards an optimal mutation probability for genetic
algorithms. In Manner R. Schwefel, H.-P., editor, Proceedings of the 1st Conference on
Parallel Problem Solving from Nature. LNCS No. 496, pages 23–32, Berlin: Springer-
Verlag, 1990.

[19] J. Horn. The Nature of Niching: Genetic Algorithms and the Evolution of Optimal Coop-
erative Populations. PhD thesis, University of Illinois at Urbana-Champaign, 1997.

[20] C. Igel and M. Kreutz. Operator adaptation in evolutionary computation and its
application to structure optimization of neural networks. Neurocomputing, 55(1-
2):347–361, 2003.

[21] Thomas Jansen. On the analysis of dynamic restart strategies for evolutionary
algorithms. In Parallel Problem Solving from Nature – PPSN VII, volume 2439 of
Lecture Notes in Computer Science, pages 33–43, 2002.

[22] H. Kitano. Designing neural network using genetic algorithm with graph genera-
tion system. Complex Systems, 4:461–476, 1990.

[23] John R. Koza. Genetic Programming: On the Programming of Computers by Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[24] W. B. Langdon and R. Poli. Why ants are hard. In Genetic Programming 1998:
Proceedings of the Third Annual Conference, pages 193–201, 1998.

[25] F.H.F. Leung, H.K. Lam, S.H. Ling, and P.K.S. Tam. Tuning of the structure and
parameters of neural network using an improved genetic algorithm. IEEE Transac-
tions on Neural Networks, 14(1):79–88, January 2003.

[26] Sean Luke. Essentials of Metaheuristics. Lulu, 2009.

[27] C. Mattiussi, P. Durr, D. Marbach, and D. Floreano. Beyond graphs: A new syn-
thesis. Journal of Computational Science, 2(2):165–177, 2011.

[28] D.E. Moriarty and R. Miikkulainen. Efficient reinforcement learning through sym-
biotic evolution. Machine Learning, 22:11–32, 1996.

[29] D. Newman, S. Hettich, C. Blake, and C. Merz. Uci repository of machine learning
databases, 1998.

[30] T.H. Oong and N.A. Isa. Adaptive evolutionary artificial neural networks for pat-
tern classification. IEEE Transactions on Neural Networks, 22(11):1823–1836, October
2011.

[31] D.L. Prados. New learning algorithm for training multilayered neural networks
that uses genetic-algorithm techniques. Electronics Letters, 28(16):1560–1561, July
1992.

[32] L. Prechelt. Proben1 - a set of neural network benchmark problems and bench-
marking rules. Technical Report 21/94, Fakultat fur Informatik, Universitat Karl-
sruhe, Karlsruhe, Germany, 1994.

[33] Adam Prugel-Bennett and Alex Rogers. Modelling ga dynamics. In Theoretical
Aspects of Evolutionary Computing, pages 59–86, 1999.

[34] Benjamin Roeschies and Christian Igel. Structure optimization of reservoir net-
works. Logic Journal of the IGPL, 18(5):635–669, 2010.

24



[35] Daniel Rothman, Sean Luke, and Keith Sullivan. Do multiple trials help univariate
methods? In Proceedings of the 2011 Congress of Evolutionary Computation, pages
2391–2398. IEEE Press, 2011.

[36] Kenneth O. Stanley, David B. D’Ambrosio, and Gauci Jason. A hypercube-based
encoding for evolving large-scale neural networks. Artificial Life, 15(2):185–212,
2009.

[37] K.O. Stanley. Patterns without development, 2006. Technical report CS-TR-06-01,
University of Central Florida, 2006.

[38] K.O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary Computation, 10(2):99–127, 2002.

[39] K.O. Stanley and R. Miikkulainen. Evolving a roving eye for go. In Proceedings
of Genetic and Evolutionary Computation Conference (GECCO-2004). New York, NY:
Springer-Verlag, 2004.

[40] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

[41] Alexander P. Topchy, Er P. Topchy, Oleg A. Lebedko, and Victor V. Miagkikh. Fast
learning in multilayered neural networks by means of hybrid evolutionary and
gradient algorithms. In Proc. of IC on Evolutionary Computation and Its Applications,
pages 390–399, 1996.

[42] Y.R. Tsoy and V.G. Spitsyn. Using genetic algorithm with adaptive mutation mech-
anism for neural networks design and training. Optical memory and neural networks,
13(4):225–232, 2004.

[43] Yury Tsoy. Evolving linear neural networks for features space dimensionality re-
duction. In Proceedings of the 2012 IEEE International Joint Conference on Neural Net-
works (IJCNN 2012), 2012.

[44] Yury R. Tsoy. Computational regulatory networks and self-adaptive neuroevolu-
tionary algorithm. In 11th Int. Conf. with Int. Participation on Artificial Intelligence
(CAI-2008), volume 3, pages 50–57. Moscow: LENAND, 2008. In Russian.

[45] Phillip Verbancsics and Kenneth O. Stanley. Evolving static representations for
task transfer. Journal of Machine Learning Research, 11:1737–1769, 2010.

[46] X. Yao and Y. Liu. Evolutionary artificial neural networks that learn and gener-
alise well. In Proc. of the 1996 IEEE International Conference on Nueural Networks
(ICNN’96), volume on Plenary, Panel and Special Sessions, pages 159–164, 1996.

25


	Introduction
	Brief Review of Heuristics for Neuroevolutionary Algorithms
	Algorithm Description
	Encoding
	Operators
	Operators Choice

	Experiments Description
	XOR
	Artificial Ant
	2-Poles Balancing
	Proben1 problems

	Results of Experiments
	Growth of ANN structure
	Analysis of operators utility
	Operators usage over time
	Analysis of Successful Operators Transitions
	Transferring experience between runs

	Testing the algorithm

	Conclusion
	Acknowledgments

