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This paper concerns application of neuroevolutionary approach for dimensionality 
reduction, which leads to the results analogous to that of PCA except that eigenvectors 
are calculated approximately. Thus the presented algorithm is called pseudo-PCA. 
Experimental results for several classification problems of different dimensionalities 
show that such an approximation doesn’t tend to have much influence on the 
classification accuracy. Since pPCA is an evolutionary algorithm it can be effectively 
parallelized, which is promising from the speed of computations perspective. 

 

Introduction 

Principal Components Analysis (PCA) is one 
of the most popular methods for 
dimensionality reduction for pattern 
recognition problems [1]. It exploits simple 
and yet powerful idea that certain linear 
subspaces of the features space do not 
contribute much in the data and thus can be 
thrown away without significant damage to the 
initial information. PCA can also be 
considered as a sort of lossy compression 
algorithm, because linear subspaces to be 
thrown away contain some bit of information. 
Technically PCA requires finding of 
eigenvalues and eigenvectors of 
autocorrelation matrix C for training data. This 
implies usage of numeric methods and is 
significantly eased by the fact, that C is 
symmetric, so that special more effective 
numeric methods can be applied [2]. One of 
the biggest issues here is that such methods are 
hardly parallelizable due to iterative nature. 
At the same time a hypothesis can be stated 
that it’s not that important to compute exactly 
principal eigenvectors, but to find low-
contributing ones associated with small 
eigenvalues. In this paper a new 
neuroevolutionary approach for removal of 
linear subspaces containing small portions of 

information is presented. It differs from known 
neural algorithms for computation of PCA, 
which are based upon Hebbian learning idea 
[3], since it doesn’t exploit correlation 
between neural nodes’ outputs. The method 
presented is not aimed at exact calculation of 
eigenvectors hence it will be referred as 
pseudo-PCA (pPCA). 

Idea of the Method 

As it was stated above the presented method 
removes low-informative linear subspaces. 
First, note that PCA can be reformulated to 
find such linear subspaces, for which 
orthogonal projection of data points has 
maximal variance. In other words, linear 
subspaces with small variance of data points 
projections do not fit PCA. The question is 
whether we can throw away such subspaces 
for sure without harming the consequent steps? 
The answer is positive due to the following 
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is constant and doesn’t depend on Q. 
Sketch of the proof. The proposition can be 
proved by direct substitution of expression for 
variance into the sum and after some algebra it 
can be shown that resulting expression doesn’t 
contain Q. 
 
This proposition says, that since sum of 
projection variances is constant, then if 

columns Q̂  are estimates for eigenvectors, the 

low-contributing columns in Q̂  will be even 
less significant when coordinates of “primary” 
eigenvectors’ estimates are defined more 
precisely. Thus we can throw away basis 
vectors, which do not fit some criterion, as 
non-informative without much harm for 
elaboration of coordinates of more significant 
vectors. This has certain benefits from the 
computational point of view because 
dimensionality of the problem is reduced when 
low-contributing basis vectors are removed. 
In this paper the criterion for removal of low-
informative subspaces is (eigenvectors are to 
be sorted by decrease of variance): 
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where iq̂  - estimate of the i-th eigenvector, 

τ  - is a threshold. Typical values for τ  are 5, 
10, 20, …. Note that under this approach it is 
possible to truncate low-informative subspaces 
without knowing exact coordinates of 
principal eigenvectors. That’s why the 
presented method is called pseudo-PCA: it 
removes possibly unimportant linear subspaces 
(with some error), but doesn’t compute 
principal components. 
The above argumentation gives rise to the 
following neuroevolutionary algorithm: 

1. Initialize random population, each 
individual is a candidate solution for 
pPCA. 

2. Evaluate each individual using the 
following fitness function: 

max))(( ˆ →=∑
i
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a. Compute mean variances var  of 
projections onto eigenvectors’ 
estimates. 

b. Starting from the last element in 

var  check whether criterion (2) is 
satisfied. If it does for some k-th 
element, then remove 
correspondent genes from all 
individuals in population. If not, 
then proceed to Step 3. 

3. Selection. 
4. Crossing and Mutation. 
5. If algorithm run’s is completed then 

proceed to Step 6, otherwise proceed 
to Step 2. 

6. Return the best found individual. 
Special operators are used for evaluation of 
fitness and crossing. 
 
Fitness evaluation procedure 
Fitness evaluation procedure can be expanded 
in the following way (for the i-th individual): 

1. Assign genes of individual to Artificial 
neural network (ANN) with linear 
nodes. 

2. Apply Gram-Schmidt 
orthogonalization to ANN weights. 

3. Compute responses of ANN for each 
training sample. 

4. Compute variances of ANN outputs. 
5. Sort ANN nodes by the decrease of 

variances. 
6. Copy obtained vector of weights back 

into chromosome. 
Sorting of ANN outputs by responses’ 
variance is required to order basis vectors, 
correspondent to the nodes’ weights, by their 
contribution to training data representation. 
Note that evaluation of each individual is 
independent and can be performed in parallel. 
 
Crossing 
The algorithm also uses a special crossover 
operator, which employs an idea from the 
Euler’s approximation. 
Let i-th and j-th individuals are crossed each 
representing combination of all weights of 
ANN (wi and wj respectively). Suppose that 
the i-th individual is the better one. Each 
vector of weights is split into NO parts, where 
NO – is a number of ANN outputs: 
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variance of projection of training data samples 
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part-wise to produce one offspring using: 
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where )(kc  – k-th part of the offspring’s 
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parent parts, x  – Euclidian norm of x.  

The fraction in (3) is used to approximate the 
absolute value of gradient of k-th part weight 
so that overall expression (3) can be treated as 
linear approximation for the update of k-th part 
moving from the point )(k

iw . 

Experiments Description 

Main goal of the experimental study is 
twofold: 

1. It is important to find out whether 
efficient dimensionality reduction is 
possible. 

2. Since pPCA doesn’t yield linear 
subspaces associated with the principal 
components it’s also important to know 
how this affects classification 
accuracy. 

Testing of the proposed pPCA method will be 
conducted using several classification 
problems from the Proben1 set [4], namely 
(dimensionality of the features space is given 
in brackets): cancer1 (9), card1 (51), 
diabetes1 (8), glass1 (9), heart1 (35), horse1 
(58), soybean1 (82), thyroid1 (21). 
NE approach will be used for reduction of the 
features space dimensionality and after that 
transformed objects descriptions will be used 
to train feed-forward ANN using traditional 
gradient training. 
The following values for criterion τ  for 
removal of non-informative linear subspaces 
according to (2) to be considered: 5, 10, 20. 

During each run a pPCA solution to be found 
and for this solution 10 ANNs will be trained, 
from which only one is selected using 
classification error on a validation data set. 
This winning ANN is used for classification of 
samples from a test data set. For each problem 
10 runs are performed and mean classification 
accuracy is used for comparison and analysis. 
EA run duration to find a particular pPCA 
solution is 50 generations and each ANN for 
classification is trained using RPROP 
algorithm for 100 epochs. 

Results of Experiments and Discussion 

Classification error values on a test set are 
given in the Table 1. Also a number of ANN 
outputs in result of neuroevolutionary pPCA is 
given in brackets to evaluate dimensionality 
reduction. 
 

Table 1. Classification errors (%) for 
different values of τ . 

Problem 5=τ  10=τ  20=τ  
cancer1 (9) 2.59 (1) 2.53 (1.3) 1.78 (6.3) 
card1 (51) 14.77 

(24.1) 
16.22 
(46.4) 

15.99 
(50.7) 

diabetes1 (8) 26.56 (7.6) 26.67 (8) 26.51 (8) 
glass1 (9) 40.38 (5.1) 35.09 (7) 31.89 (8.2) 
heart1 (35) 21.13 

(23.3) 
20.00 
(32.4) 

20.00 
(35) 

horse1 (58) 29.45 
(36.7) 

30.44 
(57.5) 

32.97 
(58) 

soybean1 (82) 23.00 
(11) 

10.71 
(32.7) 

8.53 
(66.1) 

thyroid1 (21) 7.31 (5.2) 6.88 (10.6) 6.26 (18) 
 
For comparison Table 2 contains the best 
classification errors from [4-6] for the same 
problems. Results from [4] are obtained for 
traditional approach for ANN training, from 
[5] – using genetic algorithm only, and from 
[6] – using pruning methods for neural 
networks. 
 
Table 1. Classification errors (%) for other 

some approaches on the Proben1 set. 
Problem The best classification errors, % 

[4] [5] [6] 
cancer1 1.38 1.24 1.1 
card1 14.05 14.27 13.7 
diabetes1 24.10 23.70 20.8 
glass1 32.7 47.62 30.2 
heart1 19.72 21.87 18.5 
horse1 29.19 26.44 26.9 
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soybean1 9.06 8.47 N/A 
thyroid1 2.32 6.12 5.7 
Comparing the results it can be seen that for 
most problems under consideration reduction 
of dimensionality due to pPCA provides 
comparable classification accuracy with hand-
tuned ANNs trained in a “traditional” way. At 
the same time a reduction of dimensionality 
was quite significant (see cancer1 or soybean1 
results). Figures 1 and 2 show examples of 
change of averaged mean dimensionality and 
variances of projections onto the eigenvectors 
estimates with respect to time. 
 

 
Fig. 1. Change of averaged dimensionality for cancer1 

and glass1 problems. 10=τ . 

 

 
Fig. 2. Change of averaged variances of projections of 
data points onto the first 3 eigenvectors estimates for 

cancer1 problem. 10=τ . 
 
Relying upon the obtained results a very 
interesting conclusion can be made: 

There are cases when it’s not necessary to 
know exactly principal components of 
autocorrelation matrix to perform a 
reliable dimensionality reduction. 

Interesting question is what the price for use of 
approximate principal components is. If exact 
non-informative linear subspaces were ripped 
off, then transformed features would be living 
in a “correct” subspace and hence there is a 
linear transformation, which converts 

remaining eigenvectors estimates obtained by 
pPCA to the exact solutions for PCA. But if 
dimensionality reduction was made for inexact 
eigenvectors then there’s a transformation 
error for pPCA comparing with the PCA. The 
measurement of this error is somewhat tricky 
and is an open question, which should be 
studied thoroughly in order to understand 
features of the pPCA. 

Conclusion 

The paper presents novel way for 
dimensionality reduction using pseudo-PCA. 
The method is based upon application of 
neuroevolutionary approach for feed-forward 
linear neural networks without hidden nodes 
and uses special procedure for fitness 
estimation and a crossover operator. 
Experimental results show that even though 
the reduction of features space dimensionality 
was performed along approximate 
eigenvectors the obtained classification results 
are comparable with that of ANNs trained in 
more traditional ways. 
Interesting questions for the future research are 
parallelization of pPCA algorithm and analysis 
of the error in computation of eigenvectors. 
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