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1. General Description 
Title: ECWorkshop 

Purpose: Toolkit classes library for evolutionary computation 

Programming language: С++ 

Operating systems: Windows. 

WWW: http://qai.narod.ru/ecw 

2. Library Structure 
General structure scheme of the developed toolkit library is shown in fig. 1. Main modules 

are [Tsoy, 2007]: 

1) Generative module. 

2) Evolutionary algorithm (EA). 

3) Problem environment. 

4) Results processing module. 
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Fig. 1. General scheme of library modules relations 

 

All the input parameters are written into the structure QEAParameters, which contains 

fields presented in table 1, that are available for reading for all the library modules and operators 

(see also Section 7). 

http://qai.narod.ru/ecw


The Generative module is implemented using the Factory pattern [Gamma et al., 1995] and 

is used to create all the operators and data structures for EA. Necessity of Factory pattern use 

arises from the fact that functioning of evolutionary operators under use depend on the selected 

encoding type. Such an approach allows simplification of EA source code due to involved ab-

straction from the used encoding and also helps to avoid mismatch between operators and ge-

netically encoded data structures. 

 

Table 1. Description of QEAParameters structure 

Field name Field type Description 

eaType QEAType Type of used EA. 

encodingType QEncodingType Encoding type. 

permutation bool Denotes whether permuta-

tion encoding is used. 

order QOrder Gene sorting order for per-

mutation encoding. 

chromosomeLength int Chromosome length (number 

of genes). 

arity int Power of the alphabet for 

string encoding. 

geneSize int Number of bits per gene. 

geneOffset, 
genePrecision 

double, 
double 

Step size and offset respec-

tively for gene encod-

ing/decoding operations for 

integer encoding. The fol-

lowing formula is used:  

greal = genePreci-
sion*gint + geneOffset 

here greal and gint – are real 

and integer representation of 

the gene. 

initializationType QInitializationType Initialization type. 

unitsRatio double Fraction of units for initiali-

zation for integer encoding 

(from 0 to 1) 



Field name Field type Description 

populationSize int Initial population size. 

minPopSize, 
maxPopSize 

int, 
int 

Minimal and maximal popu-

lation size respectively. 

sizingStep, 
sizingDirection 

int, 
int 

Correspondingly population 

sizing step and step direction 

(“1” means increase, “-1” 

means decrease) for steady 

population sizing operator. 

generationsNumber int Number of generations for 

evolutionary search. 

errorLevel double Target value of the objective 

function. 

nichingType QNichingType Type of niching strategy 

sharingSigma double Sigma parameter value for 

the sharing niching strategy 

selectionType QSelectionType Selection operator type. 

tournamentSize int Initial tournament size for 

tournament selection. 

eliteCount int Number of elite individuals. 

parentSelectorType QParentSelectorType Type of parents selection 

operator for single crossing 

operation. 

parentNumber, 
childrenNumber 

int, 
int 
 

Respectively number of par-

ent individuals participating 

in single crossing and num-

ber of produced offspring. 

xType, xRate QCrossoverType, 
double 

Type and initial rate of 

crossover operator respec-

tively. 

xAlpha double Alpha parameter value for 

BLX and SBX operators 

mutationType, mRate QMutationType, 
double 

Type and initial rate of muta-

tion operator respectively. 



Field name Field type Description 

populationSizerType QPopulationSizerType Type of population sizing 

operator. 

removeClones bool Enables (“true”) removal of 

duplicate-individuals when 

next generation population is 

formed. 

problem QProblem* Pointer to the object that pre-

sent problem environment (is 

used by EA to evaluate fit-

ness). 

ea QEvolutionaryAlgorithm* Pointer to the EA under use 

Inputs int Number of inputs for ANN 

and RN 

outputs int Number of ouputs for ANN 

and RN 

untilFirstHit bool Makes EA to stop (if “true”) 

when the first solution is ob-

tained 

seed unsigned Random numbers generator 

seed. 

 

Produced by generative module data structures and operators are used in the module im-

plementing evolutionary algorithm to present evolutionary search. Fitness evaluation of indi-

viduals is made by calling the problem environment module from the evolutionary algorithm 

module. With this call the pointer to the individual being evaluated is passed. 

Multiple runs of EA can be made within evolutionary algorithm module. Both produced 

temporal and resulting data are stored inside the structure QRunSummary presented in table 2. 

Note that contents of this structure are available for reading to all the evolutionary operators. 

 

Table 2. Description of structure QRunSummary 

Field name Field type Description 

generation int Current generation number. 

feCount int Number of fitness evaluation calls 



Field name Field type Description 

made from the EA beginning. 

means, devs vector<double>, 
vector<double> 

Correspondingly arrays to store 

mean fitness and fitness deviation 

dynamics for every generation. 

bests, worsts vector<double>, 
vector<double> 

Correspondingly arrays to store 

best and worst fitness dynamics for 

every generation. 

popSizes vector<int> Array to store population size dy-

namics information. 

startClock, 
finishClock, 
firstHitClock 

clock_t, 
clock_t, 
clock_t 

Correspondingly time of EA’s start, 

EA’s finish and the time when the 

first solution was found. 

time, firstHitTime double, 
double 

Correspondingly time of EA run 

and time necessary to find the first 

solution in seconds. 

firstHitFECount, 
firstHitGeneration 

int, 
int 

Correspondingly number of fitness 

evaluation calls and number of ge-

nerations necessary to find the first 

solution. 

firstHitSolution QIndividual* First solution found during the EA 

run 

convergenceGeneration int Number of generation when popu-

lation convergence was occurred. 

currentBest QIndividual* The best individual found so far. 

 

Obtained in result of evolutionary algorithm module multiple runs structures of QRun-
Summary type are processed inside the processing module performing the primary statistical 

calculations to make further comparison of EAs with different parameters setting possible. 

3. Data Structures Description 
Table 3 contains information about abstract (base) classes for data structures for genetic 

encoding used in the library. 

 

Table 3. Description of base classes for genetic encoding 



Class name Brief description 

QGene Base class for single gene information. 

QIndividual Base classes for individual. Acts as a container for QGene class ob-

jects and contains methods for reading/writing of individual fitness 

and also additional methods to handle array of genes and the method 

for individual information printing into the prescribed output stream. 

QPopulation Base class for population. Acts as a container for QIndividual 

class objects and contains adiditonal methods to handle array of indi-

viduals and the method for population information printing into the 

prescribed output stream. 

 

Definition of new encodings is made by creation of derivative classes from QGene, QIn-
dividual and QPopulation classes. To simplify the addition of the new encoding the tem-

plate classes are presented (see “template.txt” file in the ECW sources root). Below the 

template declaration for the new encoding gene class is shown. Square brackets “[]” denote 

source parts that should be replaced. 

 
class QSomeGene : public QGene { 
protected: 
 [type] _value; 
public: 
 QSomeGene (void); 
 QSomeGene (const QSomeGene& argGene); 
 virtual ~QSomeGene (void); 
 
 virtual QSomeGene& operator= (const QSomeGene& argGene); 
 virtual QGene* clone () const; 
 virtual QEncodingType getEncodingType () const; 
 virtual bool equalsTo (const QGene* argGene) const; 
 virtual int assign (const QGene* argGene); 
 
 virtual [type] getValue () const; 
 virtual int setValue (const [type] argValue); 
}; 
 

Similar template classes are used for new encoding individual and population classes. All 

encoding classes should overload method getEncodingType which returns type of encoding 

defined inside the QEncodingType enumeration and method clone to create new instance of 

the object with the same encoding type that is used by the called object. 

Classes for individual’s representation should also overload toVectorDouble and 

toVectorInt methods that are used during fitness calculation to handle different encodings. 



These methods are used to convert genetic representation into array of doubles or ints for nu-

merical optimization problems. If the encoding can not be converted into such arrays (the exam-

ple is graph encoding) the overloaded methods should return Q_FAILURE. 

To store data about EA run parameters and run results structures QEAParameters and 

QRunSummary described in tables 1 and 2 respectively are used. Filling of the most fields of 

the QRunSummary structure is performed during EA run after individuals’ evaluation stage (see 

also Section 6). 

The following encoding types are supported: 

- Integer encoding. 

- Real-parameters encoding. 

- String encoding (ordered). 

- Permutation encoding (case of {string}). 

- Regulatory network. 

4. Evolutionary Operators Classes Description 
All the classes that modify and alter population during the evolutionary search process are 

referred as evolutionary operators classes. These are the following base classes: 

- QInitializer – base class for population initialization. 

- QSelection – base class for selection. 

- QParentSelector – base class for parents selection for crossing. 

- QCrossoverOperator – base class for crossover operator. 

- QMutationOperator – base class for mutation operator. 

- QPopulationSizer – base class for population sizing operator. 

- QNichingOperator – base class for niching operator. 

Note that the list above can be extended by addition of new operators. 

The base class for all the operators is abstract class QOperator which declaration is pre-

sented below: 

 
class QOperator { 
protected: 
 const QEAParameters* _params; 
 
public: 
 QOperator (void); 
 QOperator (const QOperator& argOperator); 
 virtual ~QOperator (void); 
 
 QOperator& operator= (const QOperator& argOperator); 
 



 virtual int operate () = 0; 
 virtual int setParameters (const QEAParameters& argParams); 
}; 
 

The main method of the operator class is the operate method in which operator’s func-

tioning peculiarities should be implemented. 

Use of the most operators listed above is of traditional way. However the functioning of 

QPopulationSizer operator should to be clarified. The operator under consideration is used 

for resizing of population for the next generation. Since offspring population is formed by cross-

over operator (QCrossoverOperator) then to define the moment when offspring production 

should be stopped QPopulationSizer operator should be used. Basic variant of QPopula-
tionSizer operator doesn’t change population size leaving it untouched. Such a functionality 

is implemented inside QConstPopulationSizer class. 

The example of use/interaction of different operators for genetic algorithm and their rela-

tion with data structures is depicted in figure 2 (see also Section 6). “EA Parameters; Results” 

block contains data about EA run parameters and run results obtained so far. 
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Fig. 2. The example of use of evolutionary operators inside the genetic algorithm. 
Dashed lines show reading operations while solid lines show writing operations. “EA 

parameters; Results” block is shown twice to simplify the scheme. 
 

To provide modularity of the library the inner logic of the operators functioning doesn’t 

depend on the other operators. In other words functioning of some operator has no influence on 



the functioning of another operator (although its influence on overall EA results can not be ex-

cluded). 

5. Problem Environment Description 
To calculate individual’s fitness the QProblem class is used. Such use of standalone class 

for fitness calculation allows to separate evolutionary search and problem specific properties 

[Tsoy, Spitsyn, 2004]. This provides one with possibility to use one and the same set of classes 

to solve different optimization problems. 

To define new fitness function it is necessary to create a class derivative from the QProb-
lem class (see table 4) and overload pure virtual methods getDefaultParameters, 
evaluateIndividual, evaluatePopulation and printProblemName. Also 

testIndividual method exists (which is blank by default) for the case when found (candi-

date-)solutions are need to be tested on some data which differs from that of evaluation (for ex-

ample, neuroevolution problems). The calculated fitness value is written into the variable 

_fitness inside QIndividual class. Availability of different genetic encodings involves 

necessity to handle different encodings in evaluateIndividual, evaluatePopula-
tion and testIndividual methods. 

The getDefaultParameters method is useful when there is a need to set some EA's 

parameters that depend on the problem and that are supposed to be unknown a priory 

(file/keyboard input etc.). In most cases just leave this function blank. 

 

Table 4. Brief description of the QProblem class  

Variable name Description 

_params Pointer to the QEAParameters structure containing informa-

tion about current EA run parameters. 

Method name Description 

getDefaultParameters Sets some fields of <_params> to default values according to 

the specific problem at hand. 

setParameters Transfers pointer to the QEAParameters structure with in-

formation about current EA run parameters into QProblem 

class. 

evaluateIndividual Method to calculate individual’s fitness. 

evaluatePopulation Method to calculate fitness for every individual in population. 

testIndividual Method to test obtained solution (in case when evaluation and 



testing are different, which is common for ANNs).  

printProblemName Method to print problem name into prescribed output stream. 

 

Note that current library implementation considers fitness minimization problem only 

therefore individual’s fitness should decrease as corresponding solution quality grows. 

Below an example for QOneMaxProblem class is shown considering well-known One-

max problem where the string with maximum number of units is to be found. 
 
class QOnemaxProblem : public QProblem { 
public: 

QOnemaxProblem (void) {} 
virtual ~QOnemaxProblem (void) {} 

 
int getDefaultParameters (QEAParameters* argParams) { 

argParams->geneSize = 1; 
argParams->genePrecision = 1; 
argParams->geneOffset = 0; 
return Q_OK; 

} 
 
virtual int evaluatePopulation (QPopulation* argPopul) { 

int i, popSize = argPopul->getSize (); 
for (i=0; i<popSize; i++) { 

evaluateIndividual (argPopul->getIndividual( i )); 
} 
return Q_OK; 

} 
 

virtual int evaluateIndividual (QIndividual* argInd) { 
vector<int> params; 
// convert genetic representation into vector of ints 
if (argInd-> toVectorInt(params)) { 

int nParams = _params->chromosomeLength; 
int er = nParams; 
double x; 

 
for (int i=0; i<nParams; i++) { 

x = params[i]; 
er -= x; 

} 
argInd->setFitness (er); 
return Q_OK; 

} else { 
cerr<<"\n\n[QOneMaxProblem::evaluatePopulation] error:\n" 

<<"\tIncorrect encoding type! (encoding ID = " 
<<argInd->getEncodingType()<<")\n\n"; 

return Q_FAILURE; 
} 
return Q_OK; 

} 
 
virtual int printProblemName (ostream& out) { 

out<<”Onemax problem\n”; 



return Q_OK; 
} 
 

}; 

6. Evolutionary Algorithm Class Description 
For implementation of certain evolutionary search scheme the separate class derived from 

QEvolutionaryAlgorithm class should be used. The QEvolutionaryAlgorithm 

class provides base methods for evolutionary search including population and data structures ini-

tialization and also linking operators with correspondent data structures. The sequence of opera-

tors use depends on chosen EA and evolutionary search scheme. 

Brief description of QEvolutionaryAlgorithm class main methods is presented in 

table 5. 

 
Table 5. Main methods for QEvolutionaryAlgorithm class 

Method name Description 

printName Prints algorithm name into the specified output stream 

clone Makes copy of the existing EA 

setParameters Writes run parameters into QEAParameters structure and 

creates operators and containers for data. 

initializeComponents Initialization of operators and data structures corresponding 

to the QEAParameters structure contents. 

evaluatePopulation Calculation of individuals’ fitness and update of QRun-
Summary structure fields. 

selectParentIndividuals Selection of individuals by results of fitness calculation. 

selectElite Selection of elite individuals and their transfer into next 

generation. 

crossPopulation Crossing of individuals for formation of offspring popula-

tion. If crossover rate is 0 then offspring population is cre-

ated from random pairs of individuals chosen by selection. 

mutatePopulation Mutation of offspring population. 

nextGeneration Proceed to the next generation. 

finishWork Reallocation memory for data structures and operators. 

printResults Prints algorithm specific run results (if there are any) into 

the specified output stream. This method is called by the 

QSummaryProcessor object. 



Method name Description 

run Pure virtual method in which evolutionary operators calls 

should be implemented in definite order for evolutionary 

search. 

 

Below the variant of implementation (overloading) of method for genetic algorithm 

QGeneticAlgorithm class functioning according to the scheme in figure 2 is presented: 

 
#define Q_FAILURE 0 
#define Q_OK  1 
 
int QGeneticAlgorithm::run () { 

if (_params.generationsNumber > 0) { 
int i; 
QRunSummary summary; 

 
_summary.reset (); // initialization of 

// QRunSummary structure 
_summary.startClock = clock (); 

 
initializeComponents (); // EA initialization 

 
for (i=0; i<_params.generationsNumber; i++) { 

evaluatePopulation ();  // individuals evaluation 
selectParentIndividuals (); // selection 
selectElite ();   // elite individuals 

// selection 
crossPopulation ();  // crossing 
mutatePopulation ();  // mutation 
nextGeneration ();   // next generation 
_summary.generation++; 

} 
_summary.finishClock = clock (); 

 
return Q_OK; 

} else { 
cerr<<"\n\n[QGeneticAlgorithm::run] error:\n" 

<<"\tGenerations number is undefined!\n\n"; 
return Q_FAILURE; 

} 
} 
 

An example of use of QGeneticAlgorithm class, overloaded run method and also 

QSummaryProcessor class object to process runs results is shown below: 

 
int main () { 

QEvolutionaryAlgorithm* ea = new QGeneticAlgorithm; 
QEAParameters params; 



QProblem* problem; 
QSummaryProcessor sumProcessor; 

 
/** 
Read run parameters, 
filling of QEAParameters structure 
and QProblem object creation 
*/ 

 
// Pass EA run parameters 
problem->getDefaultParameters (&params); 
problem->setParameters (&params); 
ea->setParameters (params);    
sumProcessor.setParameters (params); 
 
// Organization of 100 independent EA runs 
for (i=0; i<100; i++) { 

ea->run ();  // EA run 
// save run results 
sumProcessor.addSummary (ea->getSummary()); 

} 
sumProcessor.operate (); // results processing 

 
ea->finishWork (); // reallocation of data structures 

// and operators 
// reallocation of EA and problem objects 
delete problem; 
delete ea; 

 
return 0; 

} 

7. Configuration File Description (config.xml) 
EA run parameters setting is performed via the configuration file «config.xml». Pa-

rameters values are defined inside «parameter» tags and should contain two embedded tags 

«name» and «value» to define parameter name and its value. Below an example for population 

size parameter setting is shown: 

<parameter> 
<name>Population size</name> 
<value>50</value> 

</parameter> 
 

Parameters names used inside configuration file are presented in table 6 arranged in alpha-

betical order. 

Table 6. Configuration file parameters. 

[type] – denotes parameter value type, 

{type} – denotes encoding type, 

<name> – denotes configuration parameter name 



Parameter name Value Description 

Arity [int] Power of alphabet for {string} encoding. 

Children number 2 Number of children produced by crossover. Should 

be set to 2! 

Chromosome length [int] Number of genes inside the chromosome. 

Crossover rate [double] Crossover rate. 

1-point 1-point crossover operator for {integer} and 

{string} encodings. 

2-point 2-point crossover operator for {integer} and 

{string} encodings. 

uniform Uniform crossover operator for {integer} and 

{string} encodings. 

1-point PGX 1-point per-gene crossover operator for {integer} 

encoding. 

2-point PGX 2-point per-gene crossover operator for {integer} 

encoding. 

arithmetic Arithmetic crossover operator for {real} encoding. 

BLX BLX crossover operator for {real} encoding. Al-

pha parameter is set using <xAlpha> configura-

tion parameter. 

SBX SBX crossover operator for {real} encoding. Al-

pha parameter is set using <xAlpha> configura-

tion parameter. 

Crossover type 

order Order crossover operator for {permutation} en-

coding. 

Elite count [int] Number of elite individuals. If 0 then no elitism 

used. 

integer Integer based encoding. Set encoding parameters 

using <Gene size>, <Gene offset> and <Gene 

precision> configuration parameters. 

real Real-code encoding. 

string String based encoding. Set encoding parameters 

using <Arity> configuration parameter. 

Encoding 

permutation Permutation encoding. Based on {string} encod-



ing. Set encoding parameters using <Arity> and 

<Encoding order> configuration parameters. 

regulatory network Regulatory network encoding. 

no No ordering for {permutation} encoding. 

ascending Ascending ordering for {permutation} encoding. 

Encoding order 

descending Descending ordering for {permutation} encoding. 

Error level [double] Target value of objective function. 

Gene size [int] Number of bits per gene for {integer} encoding. 

Gene offset [double] Minimal value of the encoded gene for {integer} 

encoding. See <Gene precision> description for 

details. 

Gene precision [double] Gene encoding precision for {integer} encoding. 

Decoded gene value is calculated as follows: 

Gd = GPGe+GO, 

where Gd and Ge – are decoded (phenotype) and 

encoded (genotype) gene values respectively; GP – 

gene precision value; GO – gene offset value. 

Generations number [int] Number of generations for evolutionary search. 

random Random initialization. Initialization type 

unmixed Initialization for unmixed population for {string} 

encoding only. 

Max population size [int] Maximum allowed population size parameter for 

dynamic population sizing. 

Min population size [int] Minimum allowed population size parameter for 

dynamic population sizing. 

Mutation rate [double] Mutation rate. 

bit-flip Bit-flip mutation for {integer} encoding. 

random flip Random flip mutation for {string} encoding. 

gaussian Gaussian mutation for {integer} and {real} en-

coding. 

Mutation type 

basic Basic mutation operator for the {regulatory net-

work} encoding 

Parents number 2 Number of parent individuals participating in sin-

gle crossing. Should be set to 2! 



Parents selection type random Type of <Parents number> parents selection from 

the parental subpopulation. 

Population size [int] Initial population size. 

constant Constant population size. 

steady Constantly increasing/decreasing population size. 

Set sizing parameters using <Min population 

size>, <Max population size>, <Sizing direc-

tion> and <Sizing step> configuration parame-

ters. 

simple Simple population resizing mechanism using con-

stant delta. Set sizing parameters using <Min 

population size>, <Max population size> and 

<Sizing step> configuration parameters. 

Population sizer type 

simple Fibonacci Simple population resizing mechanism using Fi-

bonacci sequence defined delta. Set sizing parame-

ters using <Min population size>, <Max popula-

tion size> configuration parameters. 

Remove clones yes/no Defines whether to allow duplicates removal 

(“yes”) or not (“no”). 

RNG seed [int] Random numbers generator seed. If 0 then seed is 

defined using system time. 

neutral No selection preformed. All the individuals are 

allowed to cross. 

Selection type 

tournament Tournament selection. Set selection parameters 

using <Tournament size> configuration parame-

ter. 

no No sizing direction for steady <Population sizer 

type>. Set sizing amount using <Sizing step> con-

figuration parameter. 

Sizing direction 

up/down Sizing using constantly increasing (“up”) or de-

creasing (“down”) population. Set sizing amount 

using <Sizing step> configuration parameter. 

Sizing step [int] Sizing amount used for steady and simple <Popu-

lation sizer type>. 



Tournament size [int] Size of the tournament for tournament selection. 

Units ratio [double] Fraction of units in chromosomes for {integer} 

encoded initialization. 

Until first hit yes/no Set EA to run until the first solution is found 

(“yes”) or until the generation limit is reached 

(“no”) 

xAlpha [double] Numerical parameter for {real} encoding cross-

over operators. 

 

Configuration file is divided into section («section» tags) but this division is made for 

convenience and do not affects reading. 

Selection of the algorithm to use is performed via «algorithm» tag in configuration file. 

This tag should contain two embedded tags «name» and «value» where the «name» tag de-

fines algorithm name (acronym is recommended) (see table 7) while the «value» tag contents 

doesn’t matter and this tag should be placed for correct configuration file reading only. Example 

for the Genetic algorithm selection is shown below: 

 
<algorithm> 

<name>GA</name> 
<value>don't care</value> 

</algorithm> 
 

Table 7. Algorithms naming description 

Algorithm’s name (acronym) Description 

GA Genetic algorithm. 

SARN Self-Adaptive Regulatory Network. 

SARN2 Self-Adaptive Regulatory Network (2nd 

variant). 

 

The selection of problem to solve is made using «problem» tag in configuration file. This 

tag should contain two embedded tags «name» and «value» where the «name» tag defines 

problem name (see table 8) while the «value» tag contents doesn’t matter and this tag should 

be placed for correct configuration file reading only. Example for the Sphere function selection 

is shown below: 

<problem> 
<name>Sphere</name> 
<value>don't care</value> 

</problem> 



 
Table 8. Problems naming description 

Problem’s name Description 

Deceptive 4-ugly deceptive problem by D. Whitley. 

Double sin Sum of two sine waves prediction problem (taken from [Schmid-

huber et al., 2005]) (for SARN and SARN2 algorithms only) 

Mixing-time Mixing-time research setting. 

Onemax Onemax (units counting) problem. 

Pointless Pointless problem. Fitness values are assigned at random. 

Rastrigin Rastrigin’s function. Multimodal, symmetric. 

Rosenbrock Rosenbrock’s function. Multimodal, symmetric, have plateau. 

Schwefel Schwefel’s function. Multimodal, asymmetric. 

Sphere Sphere function. Unimodal, easy. 

XOR XOR problem for ANN (for SARN and SARN2 algorithms only) 

 

8. Running EA and getting results 
The compiled exe-file runs in console mode. The following command-line format is used: 

ecw.exe [config-file] [r] 
Here [config-file] is the name of the configuration file (“config.xml” is used by 

default) and [r] – is a number of EA’s independent runs (default is 1). For example: 

ecw.exe config_ga.xml 100 

runs EA for 100 independent runs and makes ecw read parameters from the “con-
fig_ga.xml” configuration-file. 

After the run is finished all results that were processed by QSummaryProcessor object 

are written into the “summary.log” file. Some additional results that could be written by 

QEvolutionaryAlgorithm::printResults method call are also written into this file. 

Found solutions are written into the “solution.log” and candidate-solutions are writ-

ten into the “candidate.log”. 
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