Y. Tsoy

EVOLUTIONARY COMPUTATION TOOLKIT LIBRARY ECWORKSHOP
(ECW)

Version 0.2

11-25-2007

Development of the ECW is still in progress therefore the structure of
the library and some working concepts are subjects to change. For
guestions, please, mail me to gai@mail.ru

Yury Tsoy

mailto:qai@mail.ru

CONTENTS

1. GENERAL DESCRIPTION. ...ttt 4
2. LIBRARY STRUCTURE ...ttt 4
3. DATA STRUCTURES DESCRIPTION ..ottt 8
4. EVOLUTIONARY OPERATORS CLASSES DESCRIPTION......cciiiiiiiiiieeiieeeeeeee 10
5. PROBLEM ENVIRONMENT DESCRIPTIONoooiiiiiiieieeeee e 12
6. EVOLUTIONARY ALGORITHM CLASSDESCRIPTION.......eeiiiiiiiiieeieeeeeeen 14
7. CONFIGURATION FILE DESCRIPTION (CONFIG.XML) c.eooiiiiiiiiieeieeee e 16
8. RUNNING EA AND GETTING RESULTS.....oiiiieeee e 21

REFERENGCES ...ttt e e e e e sne e e eaneeeaaes 21

1. General Description
Title: ECWorkshop

Purpose: Toolkit classes library for evolutionary computation
Programming language: C++
Operating systems. Windows.
WWW: http://gai.narod.ru/ecw

2. Library Structure
General structure scheme of the developed toolkit library is shown in fig. 1. Main modules

are [Tsoy, 2007]:
1) Generative module.
2) Evolutionary algorithm (EA).
3) Problem environment.

4) Results processing module.

{} h J

Generative rl: Evolutionary j rl: Problem
module algorithm environment

=[Results processor

Fig. 1. General scheme of library modules relations

All the input parameters are written into the structure QEAPar anet er s, which contains
fields presented in table 1, that are available for reading for all the library modules and operators
(see also Section 7).

http://qai.narod.ru/ecw

The Generative module is implemented using the Factory pattern [Gamma et al., 1995] and

is used to create al the operators and data structures for EA. Necessity of Factory pattern use

arises from the fact that functioning of evolutionary operators under use depend on the selected

encoding type. Such an approach allows simplification of EA source code due to involved ab-

straction from the used encoding and also helps to avoid mismatch between operators and ge-
netically encoded data structures.

Table 1. Description of QEAPar anet er s structure

Field name Field type Description

eaType EAType Type of used EA.

encodi ngType (Encodi ngType Encoding type.

permnut ati on bool Denotes whether permuta-
tion encoding is used.

or der QO der Gene sorting order for per-
mutation encoding.

chr onosonelLengt h i nt Chromosome length (number
of genes).

arity i nt Power of the alphabet for
string encoding.

geneSi ze i nt Number of bits per gene.

geneO f set, doubl e, Step size and offset respec-

genePreci si on doubl e tively for gene encod-

ing/decoding operations for
integer encoding. The fol-
lowing formula is used:

Oreal = Q€NePreci -
si on*gin + gene f set
here grea and gin — are red
and integer representation of

the gene.

initializationType

QnitializationType

Initialization type.

unitsRatio

doubl e

Fraction of units for initiali-
zation for integer encoding
(from0Oto 1)

Field name Field type Description

popul ati onSi ze i nt Initial population size.

m nPopSi ze, i nt, Minimal and maximal popu-

maxPopSi ze i nt lation size respectively.

si zi ngSt ep, i nt, Correspondingly population

sizingDirection i nt Sizing step and step direction
(“1" means increase, “-1"
means decrease) for steady
population sizing operator.

gener at i onsNunber i nt Number of generations for
evolutionary search.

errorlLevel doubl e Target value of the objective
function.

ni chi ngType NI chi ngType Type of niching strategy

sharingSi gma doubl e Si gma parameter value for

the sharing niching strategy

sel ectionType

Sel ecti onType

Selection operator type.

t our nanent Si ze i nt Initial tournament size for
tournament selection.
el i t eCount i nt Number of elite individuals.

par ent Sel ect or Type

QPar ent Sel ect or Type

Type of parents selection
operator for single crossing

operation.
par ent Nunber , i nt, Respectively number of par-
chi | dr enNunber i nt ent individuals participating
in single crossing and num-
ber of produced offspring.
xType, XxRate QCr ossover Type, Type and initial rate of
doubl e Crossover operator respec-
tively.
xAl pha doubl e Al pha parameter value for

BLX and SBX operators

mut ati onType, nRate

Qwvut at i onType,
doubl e

Type and initial rate of muta-
tion operator respectively.

Field name

Field type

Description

popul ati onSi zer Type

QPopul ati onSi zer Type

Type of population sizing
operator.

renoved ones

bool

Enables (“true”) removal of
duplicate-individuals when
next generation population is
formed.

probl em

QPr obl ent

Pointer to the object that pre-
sent problem environment (is
used by EA to evaluate fit-

ness).

ea

(Evol utionaryAl gorithnt

Pointer to the EA under use

| nput s

i nt

Number of inputs for ANN
and RN

out puts

i nt

Number of ouputs for ANN
and RN

until FirstHit

bool

Makes EA to stop (if “true”)
when the first solution is ob-
tained

seed

unsi gned

Random numbers generator
Seed.

Produced by generative module data structures and operators are used in the module im-

plementing evolutionary algorithm to present evolutionary search. Fitness evaluation of indi-

viduals is made by calling the problem environment module from the evolutionary algorithm
module. With this call the pointer to the individual being evaluated is passed.

Multiple runs of EA can be made within evolutionary algorithm module. Both produced

temporal and resulting data are stored inside the structure QRunSunmar y presented in table 2.

Note that contents of this structure are available for reading to al the evolutionary operators.

Table 2. Description of structure QRunSunmmar y

Field name Field type Description
generation i nt Current generation number.
f eCount i nt Number of fitness evaluation calls

Field name Field type Description
made from the EA beginning.
neans, devs vect or <doubl e>, | Correspondingly arrays to sore
vect or <doubl e> mean fitness and fitness deviation
dynamics for every generation.
bests, worsts vect or <doubl e>, | Correspondingly arrays to sore
vect or <doubl e> best and word fitness dynamics for
every generation.
popSi zes vect or <i nt > Array to store population size dy-
namics information.
start d ock, cl ock_t, Correspondingly time of EA’s start,
fini shd ock, clock t, EA’s finish and the time when the
firstH td ock cl ock_t first solution was found.
time, firstH tTinme doubl e, Correspondingly time of EA run
doubl e and time necessary to find the first
solution in seconds.
firstH t FECount, i nt, Correspondingly number of fitness
firstH t Generation i nt evaluation calls and number of ge-
nerations necessary to find the first
solution.
firstH t Sol ution Q ndi vi dual * First solution found during the EA
run
conver genceCGeneration |int Number of generation when popu-
lation convergence was occurred.
current Best Q ndi vi dual * The best individual found so far.

Obtained in result of evolutionary algorithm module multiple runs structures of QRun-

Summar y type are processed inside the processing module performing the primary statistical

calculations to make further comparison of EAs with different parameters setting possible.

3. Data Structures Description
Table 3 contains information about abstract (base) classes for data structures for genetic

encoding used in the library.

Table 3. Description of base classes for genetic encoding

Class name Brief description

Cene Base class for single gene information.

Q ndi vi dual Base classes for individual. Acts as a container for QGene class ob-
jects and contains methods for reading/writing of individual fitness
and also additional methods to handle array of genes and the method
for individual information printing into the prescribed output stream.

QPopul ati on Base class for population. Acts as a container for Q ndi vi dual
class objects and contains adiditonal methods to handle array of indi-
viduals and the method for population information printing into the

prescribed output stream.

Definition of new encodings is made by creation of derivative classes from QGene, Q n-
di vi dual and QPopul at i on classes. To simplify the addition of the new encoding the tem-
plate classes are presented (see “t enpl at e. t xt ” file in the ECW sources root). Below the
template declaration for the new encoding gene class is shown. Square brackets “[]” denote
source parts that should be replaced.

cl ass SonmeCGene : public QGene {

pr ot ect ed:
[type] _val ue;
publ i c:

QSoneCGene (void);
QSoneCGene (const QSonmeCGene& ar gGene) ;
virtual ~QSomeCGene (void);

virtual QSoneGene& operator= (const QSoneGene& ar gGene);
virtual QGene* clone () const;

virtual QEncodi ngType get Encodi ngType () const;

virtual bool equal sTo (const QGene* argGene) const;
virtual int assign (const QGene* argCene);

virtual [type] getValue () const;
virtual int setValue (const [type] argValue);

Similar template classes are used for new encoding individual and population classes. All
encoding classes should overload method get Encodi ngType which returns type of encoding
defined inside the QEncodi ngType enumeration and method cl one to create new instance of
the object with the same encoding type that is used by the called object.

Classes for individual’s representation should also overload t oVect or Doubl e and

t oVect or I nt methods that are used during fitness calculation to handle different encodings.

These methods are used to convert genetic representation into array of doubles or ints for nu-
merical optimization problems. If the encoding can not be converted into such arrays (the exam-
ple is graph encoding) the overloaded methods should return Q_FAI LURE.

To dore data about EA run parameters and run results structures QEAPar anet er s and
QRunSunmmar y described in tables 1 and 2 respectively are used. Filling of the most fields of
the QRunSunmar y structure is performed during EA run after individuals' evaluation stage (see
also Section 6).

The following encoding types are supported:

- Integer encoding.

- Real-parameters encoding.

- String encoding (ordered).

- Permutation encoding (case of {string}).

- Regulatory network.

4. Evolutionary Operators Classes Description
All the classes that modify and alter population during the evolutionary search process are

referred as evolutionary operators classes. These are the following base classes:
-Qnitializer —baseclassfor population initialization.
- (Sel ect i on —base class for selection.
- QPar ent Sel ect or —base class for parents selection for crossing.
- QCr ossover Oper at or —base class for crossover operator.
- Qwt at i onOper at or — base class for mutation operator.
- QPopul ati onSi zer —base class for population sizing operator.
- QNi chi ngQper at or —base class for niching operator.
Note that the list above can be extended by addition of new operators.
The base class for all the operators is abstract class QOper at or which declaration is pre-
sented below:

cl ass QOperator {
pr ot ect ed:
const QEAPar amet ers* _par ans;

publi c:
Qperator (void);
QQperator (const (Operator& argQOperator);
virtual ~QOperator (void);

QOper ator & operator= (const (QQOperator& argQperator);

virtual int operate () = O;
virtual int setParanmeters (const QEAParanetersé& argParans);
i

The main method of the operator class is the oper at e method in which operator’s func-
tioning peculiarities should be implemented.

Use of the most operators listed above is of traditional way. However the functioning of
QPopul ati onSi zer operator should to be clarified. The operator under consideration is used
for resizing of population for the next generation. Since offspring population is formed by cross-
over operator (QCr ossover Qper at or) then to define the moment when offspring production
should be stopped QPopul at i onSi zer operator should be used. Basic variant of QPopul a-
ti onSi zer operator doesn't change population size leaving it untouched. Such a functionality
isimplemented inside QConst Popul ati onSi zer class.

The example of use/interaction of different operators for genetic algorithm and their rela-
tion with data structures is depicted in figure 2 (see also Section 6). “EA Parameters, Results’
block contains data about EA run parameters and run results obtained so far.

i, -—-- Readin
o Initial ving
Qnitializer . — Writing
& population
EA parameters .
Results AN

T \\

l A

: el ection

h J

Offspring

Qwit at i onOper at or / h J

population J/
EA parameters Population after
_ Results the selection
:
¥ v yd
QPopul ationSi zer F-———————- QCr ossover Oper at or .,

Fig. 2. The example of use of evolutionary operators inside the genetic algorithm.
Dashed lines show reading operations while solid lines show writing operations. “EA
parameters; Results’ block is shown twice to simplify the scheme.

To provide modularity of the library the inner logic of the operators functioning doesn’'t
depend on the other operators. In other words functioning of some operator has no influence on

the functioning of another operator (although its influence on overall EA results can not be ex-
cluded).

5. Problem Environment Description
To calculate individual’ s fitness the QPr obl emclass is used. Such use of standalone class

for fitness calculation allows to separate evolutionary search and problem specific properties
[Tsoy, Spitsyn, 2004]. This provides one with possibility to use one and the same set of classes
to solve different optimization problems,

To define new fitness function it is necessary to create a class derivative from the QPr ob-
| em class (see table 4) and overload pure virtual methods get Def aul t Par anet er s,
eval uat el ndi vi dual , eval uat ePopul ation and printProbl emNane. Also
t est I ndi vi dual method exists (which is blank by default) for the case when found (candi-
date-)solutions are need to be tested on some data which differs from that of evaluation (for ex-
ample, neuroevolution problems). The calculated fitness value is written into the variable
_fitness inside Q ndi vi dual class. Availability of different genetic encodings involves
necessity to handle different encodings in eval uat el ndi vi dual , eval uat ePopul a-
tionandtestl ndivi dual methods.

The get Def aul t Par anmet er s method is useful when there is a need to set some EA's
parameters that depend on the problem and that are supposed to be unknown a priory
(filelkeyboard input etc.). In most cases just leave this function blank.

Table 4. Brief description of the QPr obl emclass

Variable name Description

_par ans Pointer to the QEAPar anet er s structure containing informa-

tion about current EA run parameters.

Method name Description

get Def aul t Par anet er s | Sets some fields of <_params> to default values according to

the specific problem at hand.

set Parameters Transfers pointer to the QEAPar anet er s structure with in-
formation about current EA run parameters into QPr obl em

class.

eval uat el ndi vi dual Method to calculate individual’ s fithess.

eval uat ePopul ati on Method to calculate fitness for every individual in population.

t est | ndi vi dual Method to test obtained solution (in case when evaluation and

testing are different, which is common for ANNS).

pri nt Probl enNane Method to print problem name into prescribed output stream.

Note that current library implementation considers fitness minimization problem only
therefore individual’ s fitness should decrease as corresponding solution quality grows.
Below an example for QOneMaxPr obl em class is shown considering well-known One-

max problem where the string with maximum number of unitsis to be found.

cl ass OnenmaxProbl em: public QProblem {
public:

QOnenaxProbl em (void) {}

virtual ~QOnemaxProblem (void) {}

i nt get Def aul t Paranet ers (QEAPar anet er s* ar gPar ans) {
ar gPar ans- >geneSi ze = 1,
ar gPar ans- >genePreci si on = 1;
ar gPar ans- >geneOf f set = 0;
return Q OK;

}

virtual int eval uatePopul ati on (QPopul ati on* argPopul) {
int i, popSize = argPopul ->get Si ze ();
for (i=0; i<popSize; i++) {
eval uat el ndi vi dual (argPopul ->getlndividual (i));
}

return Q OK;
}

virtual int eval uatel ndividual (Q ndividual* arglnd) {
vect or <i nt > par ans;
/1l convert genetic representation into vector of ints
if (arglnd->toVectorlnt(params)) {

i nt nParanms = _par ans- >chr onosonelLengt h;
int er = nParans;
doubl e x;

for (int i=0; i<nParans; i++) {
X = parans[i];
er -= Xx;

}

argl nd->setFitness (er);

return Q OK;

} else {

cerr<<"\ n\ n[@neMaxProbl em : eval uat ePopul ation] error:\n"
<<"\tlncorrect encoding type! (encoding ID ="
<<ar gl nd- >get Encodi ngType() <<")\ n\ n";

return Q FAl LURE;

}
return Q OK;

}

virtual int printProbl enName (ostrean& out) {
out <<’ Onemax problemn”;

return Q OK;

6. Evolutionary Algorithm Class Description
For implementation of certain evolutionary search scheme the separate class derived from

QEvol utionaryAl gorithmclass should be used. The QEvol uti onaryAl gorithm

class provides base methods for evolutionary search including population and data structures ini-

tialization and also linking operators with correspondent data structures. The sequence of opera-

tors use depends on chosen EA and evolutionary search scheme.

Brief description of QEvol uti onar yAl gori t hmclass main methods is presented in

table 5.
Table 5. Main methods for QEvol ut i onar yAl gori t hmclass
Method name Description
pri nt Name Prints algorithm name into the specified output stream
cl one Makes copy of the existing EA

set Paraneters

Writes run parameters into QEAPar anet er s structure and

creates operators and containers for data.

initializeConponents

Initialization of operators and data structures corresponding

to the QEAPar anet er s structure contents.

eval uat ePopul ati on

Calculation of individuals fitness and update of QRun-

Sunmmar y structure fields.

sel ect Par ent | ndi vi dual s

Selection of individuals by results of fitness calculation.

selectElite

Selection of dlite individuals and their transfer into next

generation.

crossPopul ati on

Crossing of individuals for formation of offspring popula-
tion. If crossover rate is O then offspring population is cre-
ated from random pairs of individuals chosen by selection.

nmut at ePopul ati on

Mutation of offspring population.

next Gener ati on

Proceed to the next generation.

fini shwrk

Reallocation memory for data structures and operators.

printResults

Prints algorithm specific run results (if there are any) into
the specified output stream. This method is called by the

QSunmar yPr ocessor object.

Method name Description

run Pure virtual method in which evolutionary operators calls
should be implemented in definite order for evolutionary

search.

Below the variant of implementation (overloading) of method for genetic algorithm

QCeneti cAl gori t hmclass functioning according to the scheme in figure 2 is presented:

#define Q_FAILURE O
#define QK 1

int QGeneticAlgorithm:run () {
if (_parans. generati onsNunber > 0) {
int i;
QRunSunmmary sunmmary;
_summary.reset (); // initialization of

/[l QRunSummary structure
_summary.startC ock = clock ();

initializeConmponents (); /1 EAinitialization

for (i=0; i<_parans.generationsNunber; i++) {
eval uat ePopul ation (); /1 individuals eval uation
sel ect Parent I ndividuals (); // selection
selectElite (); /1 elite individuals

/'l selection

crossPopul ation (); /'l crossing
nmut at ePopul ation (); /1 mutation
next Generation (); /1 next generation
_summary. gener ati on++;

}

_summary. finishC ock = clock ();

return Q CK;

} else {

cerr<<"\n\n[QCGeneticAlgorithm:run] error:\n"
<<"\t Generations nunber is undefined!'\n\n";
return Q FAI LURE;

An example of use of QGeneti cAl gorit hmclass, overloaded r un method and also

QSunmar yPr ocessor class object to process runs results is shown below:

int min () {
QEvol utionaryAl gorithnt ea = new QGeneti cAl gorithm
QEAPar anmet er s par ans;

QPr obl ent probl em
QSummar yPr ocessor sunProcessor;

/**

Read run paraneters,

filling of QEAParameters structure
and QProbl em obj ect creation

*/

/| Pass EA run paraneters

pr obl em >get Def aul t Par anet ers (&par ans) ;
probl em >set Paraneters (¶ns);

ea- >set Par anet ers (parans);

sunProcessor. set Paraneters (parans);

/'l Organi zation of 100 independent EA runs
for (i=0; i<100; i++) {
ea->run (); /1 EA run
/'l save run results
sunProcessor. addSunmary (ea->get Summary());

}

sunProcessor.operate (); // results processing

ea->fini shwork (); /'l reallocation of data structures
/1l and operators

/'l reallocation of EA and probl em objects

del ete probl em

del ete ea;

return O;

7. Configuration File Description (config.xml)
EA run parameters setting is performed via the configuration file «confi g. xm ». Pa

rameters values are defined inside «par anet er » tags and should contain two embedded tags
«name» and «val ue» to define parameter name and its value. Below an example for population

Size parameter setting is shown:
<par anet er >
<nanme>Popul ati on si ze</ nane>
<val ue>50</ val ue>
</ par anet er >
Parameters names used inside configuration file are presented in table 6 arranged in alpha-
betical order.
Table 6. Configuration file parameters.
[type] — denotes parameter value type,
{type} — denotes encoding type,
<name> — denotes configuration parameter name

Parameter name

Value

Description

Arity

[int]

Power of alphabet for {string} encoding.

Children number 2 Number of children produced by crossover. Should
be set to 2!

Chromosome length [int] Number of genes inside the chromosome.

Crossover rate [double] Crossover réte.

Crossover type 1-point 1-point crossover operator for {integer} and
{string} encodings.

2-point 2-point crossover operator for {integer} and
{string} encodings.

uniform Uniform crossover operator for {integer} and
{string} encodings.

1-point PGX 1-point per-gene crossover operator for {integer}
encoding.

2-point PGX 2-point per-gene crossover operator for {integer}
encoding.

arithmetic Arithmetic crossover operator for {real} encoding.

BLX BLX crossover operator for {real} encoding. Al-
pha parameter is set using <xAlpha> configura-
tion parameter.

SBX SBX crossover operator for {real} encoding. Al-
pha parameter is set using <xAlpha> configura-
tion parameter.

order Order crossover operator for { permutation} en-
coding.

Elite count [int] Number of elite individuals. If O then no elitism
used.

Encoding integer Integer based encoding. Set encoding parameters
using <Gene size>, <Gene offset> and <Gene
precision> configuration parameters.

real Real-code encoding.

string String based encoding. Set encoding parameters

using <Arity> configuration parameter.

permutation

Permutation encoding. Based on { string} encod-

ing. Set encoding parameters using <Arity> and
<Encoding order> configuration parameters.

regulatory network | Regulatory network encoding.

Encoding order no No ordering for { permutation} encoding.
ascending Ascending ordering for { permutation} encoding.
descending Descending ordering for { permutation} encoding.

Error level [double] Target value of objective function.

Genesize [int] Number of bits per gene for {integer} encoding.

Gene offset [double] Minimal value of the encoded gene for {integer}

encoding. See <Gene precision> description for
details.

Gene precision [double] Gene encoding precision for {integer} encoding.

Decoded gene value is calculated as follows:

Gy = GpGet+Go,

where G4 and G, — are decoded (phenotype) and
encoded (genotype) gene values respectively; Gp —
gene precision value; Go— gene offset value.

Generations number [int] Number of generations for evolutionary search.

Initialization type random Random initialization.
unmixed Initialization for unmixed population for {string}

encoding only.

Max population size [int] Maximum allowed population size parameter for

dynamic population sizing.

Min population size [int] Minimum allowed population size parameter for

dynamic population sizing.

Mutation rate [doublé] Mutation rate.

Mutation type bit-flip Bit-flip mutation for {integer} encoding.
random flip Random flip mutation for { string} encoding.
gaussian Gaussian mutation for {integer} and {real} en-

coding.
basic Basic mutation operator for the {regulatory net-
work} encoding

Parents number 2 Number of parent individuals participating in sin-

gle crossing. Should be set to 2!

Parents selection type

random

Type of <Parents number> parents selection from
the parental subpopulation.

Population size

[int]

Initial population size.

Population sizer type

constant

Constant population size.

steady

Constantly increasing/decreasing population size.
Set sizing parameters using <Min population
size>, <Max population size>, <Sizing direc-
tion> and <Sizing step> configuration parame-
ters.

simple

Simple population resizing mechanism using con-
stant delta. Set sizing parameters using <Min
population size>, <Max population size> and
<Sizing step> configuration parameters.

simple Fibonacci

Simple population resizing mechanism using Fi-
bonacci sequence defined delta. Set sizing parame-
ters using <Min population size>, <Max popula-

tion size> configuration parameters.

Remove clones

yesno

Defines whether to allow duplicates removal
(*yes’) or not (“no”).

RNG seed

[int]

Random numbers generator seed. If O then seed is
defined using system time.

Selection type

neutral

No selection preformed. All the individuals are
allowed to cross.

tournament

Tournament selection. Set selection parameters
using <Tournament size> configuration parame-

ter.

Sizing direction

no

No sizing direction for steady <Population sizer
type>. Set sizng amount using <Sizing step> con-
figuration parameter.

up/down

Sizing using constantly increasing (“up”) or de-
creasing (“down”) population. Set sizing amount

using <Sizing step> configuration parameter.

Sizing step

[int]

Sizing amount used for steady and simple <Popu-

lation sizer type>.

Tournament size [int] Size of the tournament for tournament selection.

Unitsratio [doublé] Fraction of units in chromosomes for {integer}
encoded initialization.

Until first hit yes/no Set EA to run until the first solution is found
(“yes’) or until the generation limit is reached
(“no”)

xAlpha [doublé] Numerical parameter for {real} encoding cross-

over operators.

Configuration file is divided into section («<sect i on» tags) but this division is made for
convenience and do not affects reading.

Selection of the algorithm to use is performed via «al gor i t hm» tag in configuration file.
This tag should contain two embedded tags «name» and «al ue» where the «nanme» tag de-
fines algorithm name (acronym is recommended) (see table 7) while the «val ue» tag contents
doesn’'t matter and this tag should be placed for correct configuration file reading only. Example
for the Genetic algorithm selection is shown below:

<al gorithnp

<nane>GA</ nane>

<val ue>don't care</val ue>
</ al gorithnp

Table 7. Algorithms naming description

Algorithm’s name (acronym) Description

GA Genetic algorithm.

SARN Self-Adaptive Regulatory Network.

SARN2 Self-Adaptive Regulatory Network (2™
variant).

The selection of problem to solve is made using «pr obl enm» tag in configuration file. This
tag should contain two embedded tags «<nanme» and «val ue» where the «nane» tag defines
problem name (see table 8) while the «val ue» tag contents doesn't matter and this tag should
be placed for correct configuration file reading only. Example for the Sphere function selection
is shown below:

<pr obl en»

<nane>Spher e</ nane>

<val ue>don't care</val ue>
</ pr obl en»

Table 8. Problems naming description

Problem’sname Description
Deceptive 4-ugly deceptive problem by D. Whitley.
Doublesin Sum of two sine waves prediction problem (taken from [Schmid-
huber et a., 2005]) (for SARN and SARN2 agorithms only)
Mixing-time Mixing-time research setting.
Onemax Onemax (units counting) problem.
Pointless Pointless problem. Fitness values are assigned at random.
Rastrigin Rastrigin’s function. Multimodal, symmetric.
Rosenbrock Rosenbrock’ s function. Multimodal, symmetric, have plateau.
Schwefel Schwefel’ s function. Multimodal, asymmetric.
Sphere Sphere function. Unimodal, easy.
XOR XOR problem for ANN (for SARN and SARN2 agorithms only)

8. Running EA and getting results
The compiled exe-file runs in console mode. The following command-line format is used:

ecw. exe [config-file] [r]

Here [confi g-fi | e] is the name of the configuration file (“confi g. xm ” is used by
default) and [r] —isanumber of EA’s independent runs (default is 1). For example:

ecw. exe config_ga.xm 100
runs EA for 100 independent runs and makes ecw read parameters from the “con-
fig_ga. xm ” configuration-file.

After the run is finished all results that were processed by QSummrar yPr ocessor object
are written into the “summary. | og” file. Some additional results that could be written by
QEvol utionaryAl gorithm: printResul ts method call are also written into thisfile.

Found solutions are written into the “sol uti on. | 0g” and candidate-solutions are writ-

teninto the“candi dat e. | og”.

References

[Gammaet al., 1995] GammaE., Helm R., Johnson R., Vlissides J. Design Patterns: Elements of
Reusable Object-Oriented Software. — Addison-Wesley, 1995.

[Schmidhuber et al., 2005] Schmidhuber J., Wierstra D., Gomez F.J. Evolino: Hybrid Neuroevo-
lution / Optimal Linear Search for Sequence Learning // Proceedings of the 19th International
Joint Conference on Artificial Intelligence (IJCAI). — Edinburgh, 2005. — P. 853-858.

[Tsoy, Spitsyn, 2004] Tsoy Y.R., Spitsyn V.G. Use of Design Patterns for Design of the Soft-
ware Environment for Researches in Genetic Algorithms // Proceedings of 8-th Korea-Russia
International Symposium on Science and Technology KORUS-2004. — Tomsk, 2004. — Pp. 166-
168.

[Tsoy, 2007] Tsoy Y.R. ECWorkshop — A Toolkit Library For Evolutionary Computation // Pro-
ceedings of International Conference on Artificial Intelligence Systems (Al1S 07). — Moscow:
Fizmatlit, 2007. — Pp. 94-101. (in Russian)

