Основы построения нечетких систем

И.А. Ходашинский,

профессор

кафедры автоматизации обработки информации

Томского университета систем управления и радиоэлектроники

hodashn@rambler.ru

Почему?

Вычислительный интеллект

Искусственные нейронные сети

Эволюционные вычисления

Нечеткие системы

Методы роевого интеллекта

Другие метаэвристики

?

Краткий обзор

- 1. Нечеткие множества и отношения
- 2. Вывод на нечетких знаниях
- 3. Типы нечетких систем
- 4. Нечеткие логические операции
- 5. Идентификация нечетких систем
- 6. Области применения нечетких систем

Lotfi A. Zadeh U-A X

Нечеткие множества

Чёткое множество A $A = \{u \mid \mu_A: U \rightarrow \{0,1\}, u \in U\}$

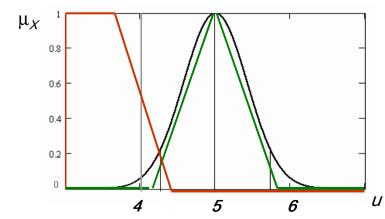
Нечёткое множество X

$$X = \{(u, \mu_X(u)) \mid \mu_X: U \rightarrow [0,1], u \in U\}$$

$$X = \int \mu_X(\mathbf{u})/\mathbf{u}$$

X- приблизительно меньше 4

X – около 5



Нечеткие отношения

Нечеткое отношение

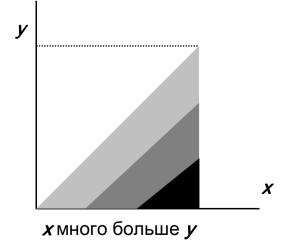
$$R: X \rightarrow Y$$

определяется на подмножестве декартова произведения нечетких множеств $X \times Y \subseteq U \times V$

$$X = \{(u, \mu(u)) \mid \mu_X: U \to [0,1], u \in U\}$$

$$Y = \{(v, \mu(v)) \mid \mu_Y: V \to [0,1], v \in V\}.$$

$$R = \{((u, v), \mu(u, v)) \mid \mu_R: U \times V \to [0,1], (u, v) \in U \times V\}$$



		Петр	Дарья
дружба =			
	Марья	0,5	0,1

Нечеткие отношения

N-арное нечеткое отношение

$$R: X_1 \times X_2 \times X_3 \times ... \times X_N \subseteq U_1 \times U_2 \times U_3 \times ... \times U_N$$

 $R = \{((u_1, u_2, ..., u_N), \mu(u_1, u_2, ..., u_N)) \mid \mu_R: U_1 \times U_2 \times ... \times U_N \rightarrow [0,1], (u_1, u_2, ..., u_N) \in U_1 \times U_2 \times ... \times U_N \}.$

Нечеткое отношение R в виде системы

$$R = (X_1 \times Y_1) \cup (X_2 \times Y_2) \cup \dots \cup (X_N \times Y_N)$$

$$X_1, X_2, X_3, ... X_N \subseteq U,$$

 $Y_1, Y_2, Y_3, ... Y_N \subseteq V.$

R: ЕСЛИ температура низкая ТО скорость вращения низкая ЕСЛИ температура средняя ТО скорость вращения средняя ЕСЛИ температура высокая ТО скорость вращения высокая

Композиция нечетких отношений

Пусть

$$R \subseteq U \times V$$
, $S \subseteq V \times W$,

тогда $Q \subseteq U \times W$,

$$Q = R \circ S = \sum_{i=1}^{n} \sum_{k=1}^{l} \bigcup_{i \in V} (\mu_{R}(u_{i}, v_{j}) \wedge \mu_{S}(v_{j}, w_{k}) / (u_{i}, w_{k}))$$

 \circ - свертка sup-min, \bigcup_{v_j} - взятие максимума для всех v_j

∧ - взятие минимума.

Возраст → богатство

ЕСЛИ *старый* ТО *умный* ЕСЛИ *умный* ТО *богатый*

Вывод на нечетких знаниях. Модус поненс

Традиционный дедуктивный вывод:

$$P \Rightarrow Q$$
 P
 Q

Традиционный дедуктивный Нечеткий дедуктивный вывод:

$$P \Rightarrow Q$$
 P'
 Q'

ЕСЛИ пасмурно ТО будет дождь пасмурно

будет дождь

ЕСЛИ умный ТО богатый не очень умный

yмный \subseteq IQ богатый \subseteq [10 000, 1 000 000]

Композиционное правило вывода

Пусть
$$X \subseteq U$$
, $R \subseteq U \times V$,

тогда композиционное правило вывода утверждает:

из
$$X$$
и R следует $Y \subseteq V$,

или
$$X \circ R = Y$$
.

$$R: A \to B$$

$$\int_{U} \mu_{A}(u)/u \qquad \int_{V} \mu_{B}(v)/v$$

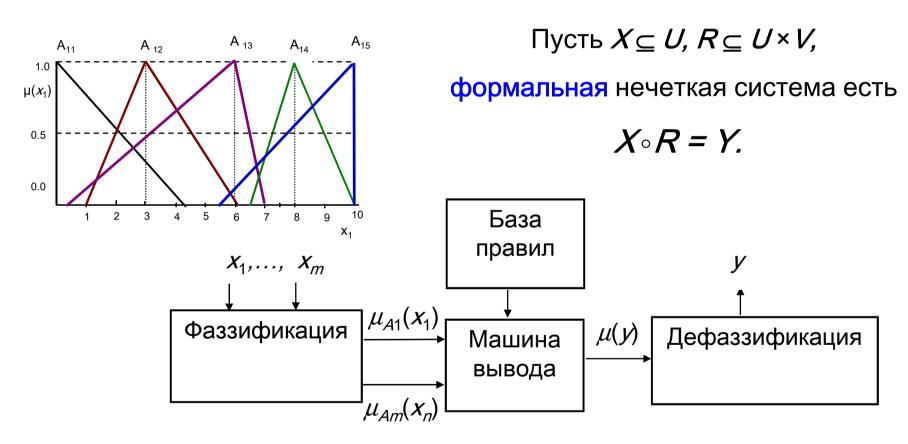
$$R_m = (A \times B) \bigcup (\sim A \times V) = \int (\mu_A(u) \wedge \mu_B(v)) \vee (1 - \mu_A(u)) / (u, v)$$

$$U \times V$$

$$R_b = ((\sim A \times V) \bigcup (U \times B)) \cap (A \times V) = \int (1 - \mu_A(u) \vee \mu_B(v)) \wedge (\mu_A(u)) / (u, v)$$

$$U \times V$$

Нечеткая система



Структура неформальной нечеткой системы

База правил

База правил нечеткой системы типа MISO:

$$R_1$$
: *ECJIV* $x_1 = A_{11}$ \mathcal{U} $x_2 = A_{21}$ \mathcal{U} ... \mathcal{U} $x_m = A_{m1}$ $\mathcal{T}O$ $y = B_1$ R_2 : *ECJIV* $x_1 = A_{12}$ \mathcal{U} $x_2 = A_{22}$ \mathcal{U} ... \mathcal{U} $x_m = A_{m2}$ $\mathcal{T}O$ $y = B_2$

$$R_n$$
: **ECTIV** $x_1 = A_{1n}$ **V** $x_2 = A_{2n}$ **V** ... **V** $x_m = A_{mn}$ **TO** $y = B_n$

где $x_1, x_2, ..., x_m$ – входные переменные; y – выходная переменная;

 A_{ij} – нечеткие области определения входных переменных, заданные на универсальных множествах $X_1, X_2, ..., X_m$;

 B_s – значение выходной переменной.

Типы нечетких систем. Синглтон

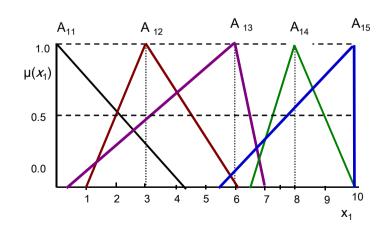
$$R_{i}^{*}$$
 ECJIV $x_{1} = A_{1i}$ **V** $x_{2} = A_{2i}$ **V**... **V** $x_{m} = A_{mi}$ **TO** $y = a_{i}$

где a_i – действительное число.

Модель типа синглтон осуществляет отображение $F: \Re^m \to \Re$, Отображение F определяется формулой:

$$F(\mathbf{x}) = \frac{\sum_{i=1}^{n} \mu_{A_{1i}}(x_1) \cdot \mu_{A_{2i}}(x_2) \cdot \dots \cdot \mu_{A_{mi}}(x_m) \cdot a_i}{\sum_{i=1}^{n} \mu_{A_{1i}}(x_1) \cdot \mu_{A_{2i}}(x_2) \cdot \dots \cdot \mu_{A_{mi}}(x_m)}$$

$$\boldsymbol{x} = [x_1, ..., x_m]^T \in \mathfrak{R}^m$$



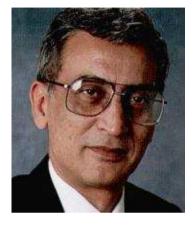
Типы нечетких систем. Такаги-Сугено

 R_i : $EC \Pi U$ $X_1 = A_{1i} U X_2 = A_{2i} U \dots U X_m = A_{mi}$ TO $Y = A_{mi}$ $f(X_1,\ldots,X_m)$

где $f(x_1,...,x_m)$ – линейная функция.

Отображение F определяется формулой:

$$F(\mathbf{x}) = \frac{\sum_{i=1}^{n} \mu_{A_{1i}}(x_{1}) \cdot \mu_{A_{2i}}(x_{2}) \cdot \dots \cdot \mu_{A_{mi}}(x_{m}) \cdot (a_{0i} + a_{1i}x_{1} + \dots + a_{mi}x_{m})}{\sum_{i=1}^{n} \mu_{A_{1i}}(x_{1}) \cdot \mu_{A_{2i}}(x_{2}) \cdot \dots \cdot \mu_{A_{mi}}(x_{m})}$$

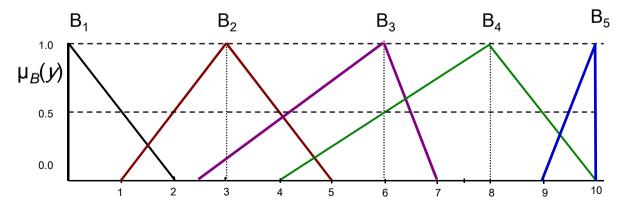


Типы нечетких систем. Мамдани

Ebrahim Mamdani

$$R_{i}^{2}$$
 ECTIV $x_{1} = A_{1i}$ V $x_{2} = A_{2i}$ V ... V $x_{m} = A_{mi}$ TO $y = B_{i}$

где B_i – терм выходной лингвистической переменной.



Нечеткие логические операции. Отрицание

Операция отрицания удовлетворяет следующим свойствам:

$$c: [0,1] \rightarrow [0,1],$$

 $c(0)=1, c(1)=0, c(c(a))=a,$
 $\forall a_1, a_2((a_1, a_2 \in [0,1]) \land ((a_1 < a_2) \rightarrow (c(a_1) > c(a_2)))).$

Нечеткое отрицание по Заде

$$c(a) = 1-a, \forall a \in [0,1].$$

Ronald R. Yager

по Сугено
$$c(a) = \frac{1-a}{1+\lambda a}$$
, где $\lambda > -1$;

по Ягеру
$$c(a) = \sqrt[p]{1 - a^p}$$
;

Конъюнкция, дизъюнкция. Т-нормы

Функция $T_n:[0,1]^n \to [0,1]$ называется *t*-нормой на интервале [0,1], а функция $S_n:[0,1]^n \to [0,1]$ называется *t*-конормой, если они обладают свойствами коммутативности, ассоциативности, монотонности, для них выполнены граничные условия, операторы Tи S являются двойственными по отношению друг к другу:

$$T^n(a_1, a_2, ..., a_n) = 1 - S^n((1-a_1, 1-a_2, ..., 1-a_n)),$$

 $S^n(a_1, a_2, ..., a_n) = 1 - T^n((1-a_1, 1-a_2, ..., 1-a_n)),$

при условии, что операция отрицания задается как c(a)=1-a.

Примеры Т-норм

Функции Заде.

$$T(a_1, a_2, ..., a_n) = \min(a_1, a_2, ..., a_n), S(a_1, a_2, ..., a_n) = \max(a_1, a_2, ..., a_n).$$

Вероятностные функции. $T(a_1, a_2, ..., a_n) = a_1 * a_2 * ... *a_n$

$$S(a_1, ..., a_n) = \left(\sum_{i=1}^n a_i - \sum_{i=1}^n \sum_{j>i}^n a_i a_j + \sum_{i=1}^n \sum_{j>i}^n \sum_{k>j}^n a_i a_j a_k \pm ... \pm \prod_{i=1}^n a_i\right)$$

Функции Лукасевича. $T(a_1, ..., a_n) = \max \left(\sum_{i=1}^n a_i - (n-1), 0 \right)$ $S(a_1, ..., a_n) = \min \left(\sum_{i=1}^n a_i, 1 \right)$

Функции Швайцера
$$S(a_1, \ldots, a_n) = \left(\sum_{i=1}^n a_i^p - \sum_{i=1}^n \sum_{j>i}^n a_i^p a_j^p + \sum_{i=1}^n \sum_{j>i}^n a_i^p a_j^p a_k^p \pm \ldots \pm \prod_{i=1}^n a_i^p\right)^{1/p}$$
 и Скляра

$$T(a_1, ..., a_n) = 1 - \left(\sum_{i=1}^n (1 - a_i)^p - \sum_{i=1}^n \sum_{j>i}^n (1 - a_i)^p (1 - a_j)^p + \sum_{i=1}^n \sum_{j>i}^n \sum_{k>j}^n (1 - a_i)^p (1 - a_j)^p (1 - a_k)^p \pm ... \pm \prod_{i=1}^n (1 - a_i)^p \right)^{1/p}$$

Импликация

Формальнологическое определение импликации через дизъюнкцию:

$$I(a_1, a_2) = S(1 - a_1, a_2).$$

Функция $I:[0,1]\times[0,1] \to [0,1]$ является функцией импликации, если она удовлетворяет следующим двум условиям:

$$I(0,0) = I(0,1) = I(1,1) = 1;$$

$$/(1,0)=0.$$

Импликация на функциях Заде

$$I(a_1, a_2) = \max(1 - a_1, a_2).$$

Импликация на вероятностных функциях $I(a_1, a_2) = 1 - a_1 + a_2 * a_1$.

$$I(a_1, a_2) = 1 - a_1 + a_2^* a_1$$

Импликация Лукасевича

$$I(a_1, a_2) = \min(1 - a_1 + a_2, 1).$$

Импликации Т-типа

Импликация по Мамдани

$$I(a_1, a_2) = \min(a_1,$$

 a_2).

Импликация по Ларсену

$$I(a_1, a_2) = a_2^* a_1.$$

Вывод в нечетких системах типа Мамдани

$$R_{i}$$
: $ECJU x_{1} = A_{1i} U x_{2} = A_{2i} U ... U x_{m} = A_{mi} TO y = B_{i}$

В операторной форме

$$R_j(x_1,...,x_m,y) = I(T(A_{1j}(x_1),...,A_{mj}(x_m)), B_j(y)).$$

Последовательно выполним следующие операции: конъюнкцию, импликацию, агрегацию (объединение всех правил).

Получим отношение $R: A \rightarrow B$,

При поступлении на вход системы нечеткого входного значения D нечеткое выходное значение F:

$$F(y) = D(x_1, ..., x_m)^{\circ} R(x_1, ..., x_m, y).$$

Вывод в нечетких системах типа Мамдани

Формально-логический метод:

$$R_{KL}(x_{1},...,x_{m}, y) = T(R_{1}^{s}(x_{1},...,x_{m}, y), R_{2}^{s}(x_{1},...,x_{m}, y), ..., R_{n}^{s}(x_{1},...,x_{m}, y)) = T(S(S(1-A_{11}(x_{1}),...,1-A_{m1}(x_{m})), B_{1}(y)), ..., S(S(1-A_{1n}(x_{1}),1-A_{mn}(x_{m})), B_{n}(y))).$$

Аппроксимации Мамдани:

$$R_{M}(x_{1},...,x_{m}, y) = S'(R_{1}^{t}(x_{1},...,x_{m}, y), R_{2}^{t}(x_{1},...,x_{m}, y),...,R_{n}^{t}(x_{1},...,x_{m}, y)) = S'(T'(T(A_{11}(x_{1}),...,A_{m1}(x_{m})), B_{1}(y)), ..., T'(T(A_{1n}(x_{1}),...,A_{m1}(x_{m})), B_{n}(y))).$$

Дефаззификация

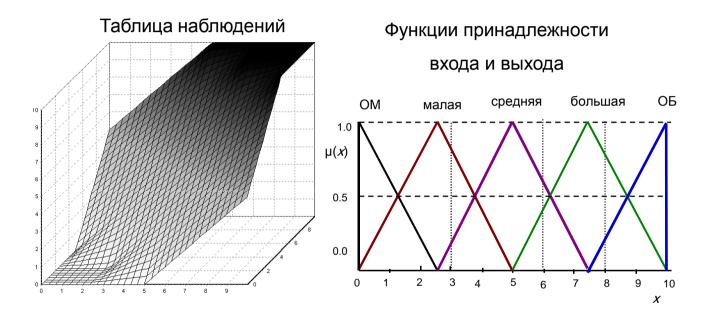
Дефаззификация — способ преобразования нечеткой величины $F(y) \subseteq [a_-, a_+]$ в четкое представление или четкую величину.

Нахождение центра масс (тяжести): $y_F^c = \frac{\int y \mu_F(y) dy}{a_+}$

Нахождение медианы:

$$\int_{a_{-}}^{y_F^m} \mu_F(y) dy = \int_{y_F^m}^{a_{+}} \mu_F(y) dy$$

Исследование вывода в системе Мамдани



25 правил в базе

ЕСЛИ х - малая

И у - средняя

TO z – малая

ЕСЛИ х - средняя

И у - средняя

ТО z – средняя

ЕСЛИ х - малая

<mark>И</mark> у - большая

TO z - средняя

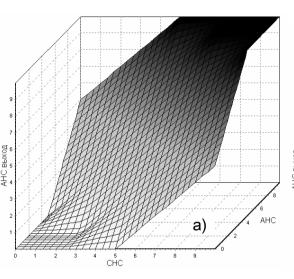
Изменяемые параметры:

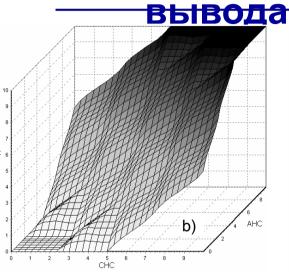
t-нормы, *t*-конормы тип вывода

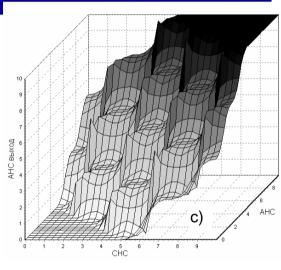
Результаты вывода

Способ вывода	<i>t</i> -норма	<i>t</i> -конорма	СКО
Формально логический	Заде	Заде	0,140322
	вероятностны е	вероятностны е	0,119871
	Лукасевича	Лукасевича	0,100539
	ШС- 0,0075	ШС-любой <i>р</i>	0,038711
	Лукасевича	ШС-любой <i>р</i>	2,72403E-06
	Лукасевича	вероятностны е	2,59846E-06
	Заде	Заде	0,010386
	вероятностны е	вероятностны е	0,001240
Аппроксимаци	Лукасевича	Лукасевича	0,033083
я <mark>Мамдани</mark> сновь	пострын Сутече презистем	ШС-0,83 Нече	ткие с 🖟 т 🖟 🕽 0363
	IIIC- 1 0	Пукасевила	2 59846F-06

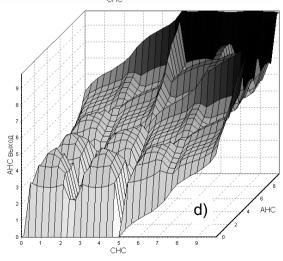
Поверхности







- а) Идеальная. Швайцера-Скляра p=0.83, AM.
- b) Заде, AM.
- с) Лукасевича, АМ.
- d) Лукасевича, ФЛМ.
- е) Вероятностные, ФЛМ.



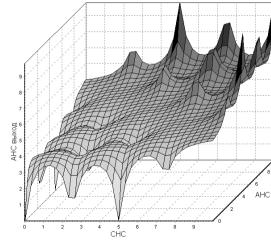


Схема идентификации

<i>X</i> ₁₁	<i>X</i> ₁₂		<i>X</i> _{1<i>n</i>}	$f(\mathbf{x}_1)$
<i>X</i> ₂₁	<i>X</i> ₂₂		<i>X</i> _{2<i>n</i>}	$f(\mathbf{x}_2)$
	:	:	:	:
X _{N1}	X _{N2}		X _{Nn}	$f(\mathbf{x}_N)$

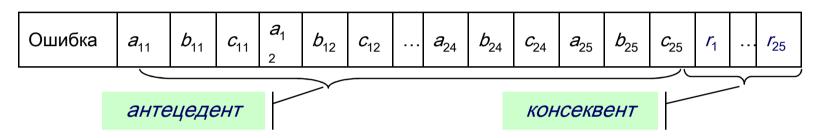
Критерий – ошибка вывода ε

$$\frac{\sum_{i=1}^{N} |f(\mathbf{x}_i) - F(\mathbf{x}_i)|}{N} \qquad \frac{\sqrt{\sum_{i=1}^{N} (f(\mathbf{x}_i) - F(\mathbf{x}_i))^2}}{N}$$

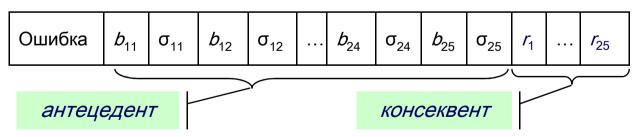
$$\max_{i} \left| f(\boldsymbol{x}_i) - F(\boldsymbol{x}_i) \right|$$

Результат идентификации

Треугольная ФП, два входа, пять термов для одного входа



Гауссова ФП, два входа, пять термов для одного входа



Методы идентификации

Идентификация структуры

Кластерный анализ

Деревья решений

Метод перебора

Идентификация параметров

Методы, основанные на производных

метод градиентного спуска;

фильтр Калмана;

метод наименьших квадратов;

алгоритм Левенберга-Марквардта.

Метаэвристические методы

эволюционные алгоритмы;

алгоритмы муравьиной колонии;

алгоритм пчелиной колонии;

метод роящихся частиц;

алгоритм имитации отжига;

алгоритмы локального поиска.

Гибридные методы

Решаемые проблемы

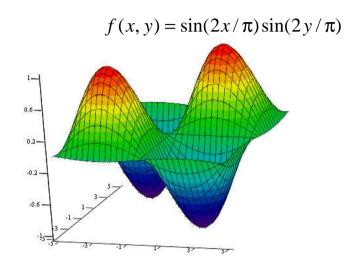
Bart Kosko

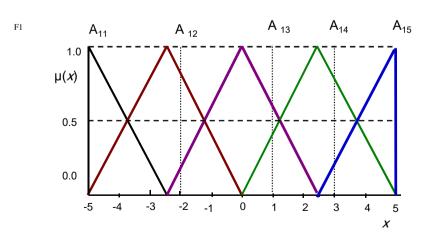
Тип системы	Основное назначение	Критерий оценки
Синглтон	аппроксимация	точность
Такаги- Сугено	аппроксимация	точность
Мамдани	извлечение знаний	интерпретируемость

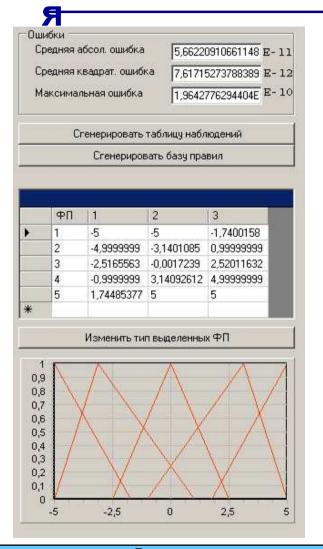
Классификация Кластеризация

 R_{i} : ECJIV $x_{1} = A_{1i}$ V $x_{2} = A_{2i}$ V ... V $x_{m} = A_{mi}$ TO class = c_{k} , CF = 0.8

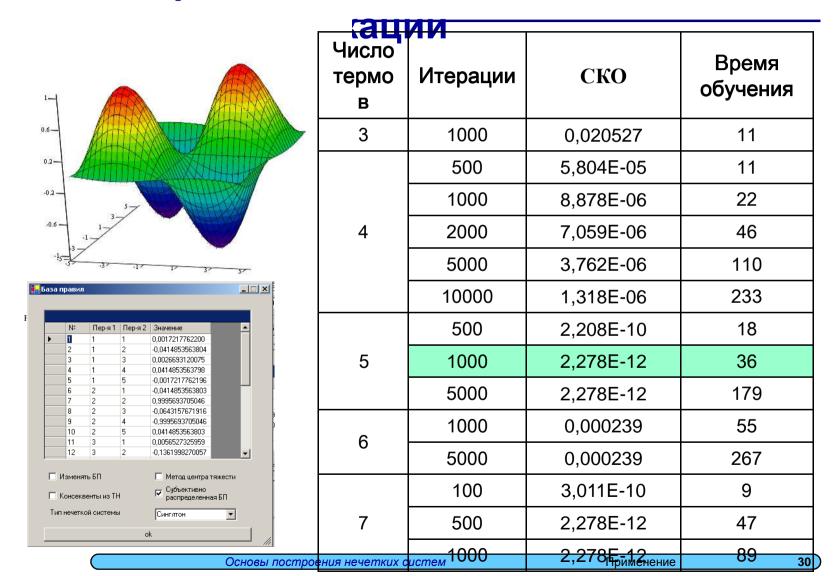
Аппроксимаци







Градиентный метод



Техническое применение

- Управление котельными установками электростанций, Assilian,1974.
- ✓ САУ карусельной печью в производстве цемента, Mamdani 1977.
- ✓ Система управления поездами метрополитена в г. Сендай, Hitachi.
- ✓ Система стабилизации изображения видеокамеры.
- ✓ Автоматическая стиральная машина.
- ✓ Микроволновые печи, Sanyo.
- ✓ Автоматические коробки передач, Nissan.

Нетехническое применение

- ✓ Система управления электронным кардиостимулятором (Akaiwa 1990; Kitamura 1991; Sugiura 1991).
- ✓ Система контроля кровяного давления (Arita 1990).
- ✓ Диагностика опухолей (Arita 1991).
- ✓ Диагностика текущего состояния сердечно-сосудистой системы (Altrock 1993).
- ✓ Обработка изображений (Fijiwara 1991; Franke 1994).
- ✓ Распознавание слов (Fujimoto 1989).
- ✓ Лечение диабета и контроль уровня сахара в крови (Jacoby 1994; Kageyama1990).
- ✓ Отопительные приборы (Heider 1994).

СПАСИБО

hodashn@rambler.ru

