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Abstract -  In this paper a developed evolutionary algo-
rithm (NEvA) for simultaneous connections and weights of 
neural network training is described. A distinctive feature 
of the algorithm is flexible and effective evolutionary 
search and a balanced resulting neural network structure 
due to adaptive mutation operator. In NEvA neural net-
work structure changes, caused by mutation operator, as 
well as mutation rate are defined independently for each 
individual. Two different problems  are chosen to test the 
algorithm. The first one is a simple 2-bit parity problem, 
well known as XOR problem, and the second is a neurocon-
trol problem of 1 and 2 poles balancing. A comparison of 
obtained results with results of other algorithms is pre-
sented. 

I. INTRODUCTION 
The genetic algorithm (GA) uses evolutionary concept to 

find a solution [1]. Due to mechanisms of heredity, mutability 
and selective pressure, GAs show great adaptive abilities. Arti-
ficial neural networks (ANN) are often used to solve classifica -
tion, approximation and control problems  [2]. 

The use of genetic algorithms for ANN training is called 
neuroevolution or neurogenesis, and such algorithms are called 
neuroevolutionary [3]. The task of simultaneous structure 
design and weights tuning of neural network has not been 
solved formally and thus represents a complex problem. In this 
paper we describe developed algorithm NEvA (NeuroEvolu -
tionary Algorithm), analyze its performance with use of two 
different problems  and compare results with that of for known 
algorithms. 
 

II. ALGORITHM DESCRIPTION 
The developed algorithm models evolution of the neural 

networks population. Genotype of each organism contains 
information about connections and their weights of the network 
corresponding to this organism. An example is given on Fig.1. 
To encode information about connection the indices of start 
and finish neurons and the connection weight are stored in the 
genotype. This way of encoding corresponds to the direct 
method of encoding of information about neural network [4]. 
The weight of connection is encoded with 17 bits and its value 
is in [-65,536; 65,535] range with precision of 0,001. 
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Fig.1. Genetic representation of ANN 
 
For mating only those organisms were selected that had er-

rors less than the average one. In result of two parents crossing 
two offspring are produced. These offspring inherit common 
neurons and connections for both parents and weights of such 

connections are recombined with use of 2-point binary cross-
over. Different connections are “gambled” between offspring. 
A mating example is shown in Fig.2. Solid lines denote com-
mon neurons and connections, and dash lines denote different 
elements of parental networks. 
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Fig.2. Mating example 
 

In initial population all organisms represent networks with-
out hidden neurons having all the input neurons connected to 
all the output neurons. Network weights are initialized ran-
domly in range [-0,5; 0,5]. During the process of evolution 
networks “grow” and become more complex. This approach is 
similar to that of in NEAT algorithm [5], and seems to be more 
reasonable, than evolution of population of initially random-
structured networks, because evolution with growth of com-
ple xity of solutions allows to evaluate neural networks topol-
ogy more thoroughly and consistently. Neurons without offsets 
with log-sigmoid activation function were used. 1 elite organ-
ism passed to the next generation without any changes, i.e. 
mutation is never applied to the best individual in the current 
generation. 
 

III. ADAPTIVE MUTATION OPERATOR 
Mutation mechanism allows to add and to delete neurons 

and connections and also to change connection weight for the 
random value. A new neuron is added with random input and 
output connections. When the neuron is deleted all the 
constrained connections are also deleted. Selection of type of 
mutation performed with respect to the neurons number and 
number of connections with use of the following heuristics: 
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here NC – number of connections in network, NI, NO, NN – ac-
cordingly number of the input, output and hidden neurons, FB 
– a flag, denoting whether recurrent connections arrival en-
abled (FB=1) of not (FB=0). It should be noted that 
connections from hidden neurons to output ones can appear in 
any case. Thus fC coefficient is necessary to estimate “linkage” 
of neurons in network, i.e. the more number of possible con-
nections, the more the coefficient’s value is. Use of the second 



coefficient fN is based on heuristic assumption that the more 
total number of input and output signals is, the more complex 
network structure is necessary to solve given task. 

To choose mutation type we use coefficients calculated with 
(2) and (3) and then squared. We denote them as FC and FN. 
Schematically the algorithm of selection of the applicable mu-
tation change is shown in Fig.3. Here Rnd – uniformly distrib -
uted random value in range (0; 1), NN – number of the hidden 
neurons in network. 
 

 
 

Fig.3. Mutation type selection scheme 
 
To simplify, the adaptive mutation algorithm can be divided 

into two branches (by the first conditional transition): 
1) Branch of fC decrease (relative grow of the neural network 

complexity). 
2) Branch of fC increase (relative recession of the neural net-

work complexity). 
Since neuron deletion can lead to decrease as well as in-

crease of fC (it depends on the number of connections associ-
ated with this neuron) then this type of mutation exists in both 
branches. Thus the main factor of network structure regulation 
is its “linkage” degree. 

Such method of mutation type selection from one hand 
doesn’t limit explicitly number of hidden neurons from the top 
and, from the other hand, prevents too fast growth of neurons 
quantity since addition of each new neuron happens with less 
probability. Connection weight mutation occurs always 1 time 
per organism and changes the weight value for random number 
from range [-0,5; 0,5]. 

Let’s look at an example of mutation type selection with re-
spect to the introduced scheme (Fig.3). Let the network on 
Fig.4 is undergoing mutation. It is necessary to define which 
type of mutation change will be applied to this network.  

 
Fig. 4. Network for the example of mutation type selection. 
 
We will denote probabilities of events “add random connec-

tion”, “delete random connection”, “add random neuron” and 

“delete random neuron” as p+conn , p-conn , p+neur and p-neur re-
spectively. To estimate values of these probabilities FC and FN 
coefficients should be calculated first. So : 
 

fC = 6 /(0,5*(5*4 – 2*1 – 1*0)) = 0,667, 
fN = 3/5 = 0,6, 
FC = fC

2
 = 0,445, 

FN = FC * fN
2
 = 0,160. 

 

Multiplication of fN
2
 and FC is necessary in order to change 

neurons number with respect to the current network topology, 
since addition or deletion of neuron demands an information 
about expediency of such a change. This information can be 
obtained indirectly via fC value. 

The case when there are no hidden neurons in network will 
be denoted via α = 1, and the case when there are hidden neu-
rons corresponds to α = 0. Then according to the scheme on 
Fig.3 the fo llowing equations take place: 
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Taking into consideration that α = 0 we can calculate prob-
abilities of selection of certain mutation transformation: 
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Thus the probability that a random hidden neuron will be de-
leted is higher than the other probabilities although the prob-
ability to add a connection is also high. As it can be seen from 
the example the scheme for selection of mutation type is effec-
tive against growth of the neural network. 

Not only a mutation type, but also a mutation operator prob-
ability is defined adaptively. In classical description [1] muta-
tion operator for binary genotypes is applied with certain prob-
ability Pm and this event is “gambled” as many times as the 
number of alleles in the genotype, in other words accordingly 
to the number of bits in chromosome. This is the reason to 
choose mutation probability relatively small, because in the 
opposite case, when mutation probability exceeds some value 
(known as “mutation error threshold” [6]), evolution of the 
population “behaves” like a random search. Thus mutation 
probability equal to 1/L, here L is a number of the smallest 
mutable parts of chromosome (single bit for binary representa-
tion and single connection encoded in genotype for NEvA), 
seems reasonable enough, since it assumes in average 1 muta-
tion per organism. But for the later stages of evolution it’s bet-
ter to decrease mutation probability in order to lower losses of 
“good” individuals. Taking into consideration these ideas it 
was decided to “gamble” mutation event NI*NO times, here NI 
and NO – accordingly number of the input and the output neu-
rons in network. So then, since we use a concept of “growing” 
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neural networks, it is possible to say that mutation effect de-
creases as evolution goes. E.g. L value increases and probabil-

ity of 1 mutation event, which equals to 
L

NN OI ⋅
, becomes 

smaller. Thus, since each genotype can represent network with 
different complexity, mutation rate is defined individually for 
every organism in the population. 
 

IV. TASKS DESCRIPTION 
To test the introduced algorithm the following two problems  

that are acknowledged as classical ones for neuroevolutionary 
algorithms  are chosen: 

1) XOR problem. This is a rather simple problem where a a 
neural network that implements binary EXCLUSIVE OR op-
eration should be built. So the network should have 2 inputs 
and 1 output and should produce output value close to “0” if 
there are (0, 0) or (1, 1) input signals and also output “1” in 
case of (1, 0) or (0, 1) input vectors. In experiments network 
error is calculated as halved average square difference between 
network response and required output value. Given neural net-
work is regarded to be a solution if its error is less than some 
error threshold. For this research the threshold value of 0,001 
was used. Algorithm performance is estimated with use of av-
erage number of object function calculations, i.e. how many 
times a training data was introduced. 

2) Pole balancing problem, also known as “Inverted pendu-
lum” [7]. This problem concerns neurocontrol domain. The 
task is considered to be hard for “standard” methods of neural 
networks training (fo r example, gradient based learning algo-
rithms) because of constantly changing state of the control ob-
ject. The goal is to try to balance 1 or 2 poles on the cart, mo v-
ing this cart in the horizontal direction straightforward or 
backwards. There are several variants of this task involving 
discrete or continuous force, pushing the cart, and full or in -
complete information about poles movement. There is also a 
variant when the cart is moved in 2D environment [8]. In this 
paper we will test NEvA algorithm for the following versions 
of pole balancing problem: (1) 1 pole with discrete force; (2) 2 
poles with continuous force. Mathematical model for pole bal-
ancing problem is described in [9]. In experiments number of 
trials before the solution network will have been found is cal-
culated. 
 

V. RESULTS AND DISCUSSION 
We first introduce results for XOR problem. The perform-

ance of NEvA algorithm is compared with that of canonical 
genetic algorithm (CGA) from [10], NEAT [5, 12] and two 
variants of back-propagation learning algorithm: simple (BP) 
and with momentum (BPM). We also made a comparison of 
NEvA with and without adaptive mutation probability (Pm). In 
the last case probability of 1 mutation per genotype was set to 
0,2. Results  for XOR problem, averaged over 50 runs, are 
shown in Table I. Average number of hidden neurons and 
number of connections denoted as NH and NC respectively. 
Results for the NEAT algorithm denoted as NEAT1 [5] and 
NEAT2 [12] are obtained for another error thresholds: 90% of 
maximum fitness (error threshold is approximately 0,005) for 

NEAT2, and in case of NEAT1 error threshold was not re-
ported, although it seems to be larger than 0,005. 

Although both NEvA and NEAT lose to gradient methods, we 
should note that the task was much more complex for 
neuroevolutionary algorithms, since not only weights but also 
network structures were tuned. And also NEvA outperforms 
CGA as many as 2 times and shows better performance than 
NEAT2, although NEAT networks are much simpler. A 
hypothesis can be proposed that since NEvA uses small 
population then phenotypic diversity inside one generation is 
large and exploitation of neural topologies is done very 
inconsistently. That is, only a few networks with the same 
topology are present at one generation and taking into con-
sideration enormous number of possible comb inations of 
weights it’s clear that level of deception is high and thorough 
investigation of each structure is hard to do. So then networks in 
next generation are likely to have another structures, that differ 
from nets in previous generation, and this makes search with 
small population in some sense chaotic. And, on the contrary, 
NEAT uses speciation and together with rather large population 
size this technique allows to explore each “niche” in search 
space thoroughly enough. NEvA with adaptive setting of muta-
tion probability is slightly better than algorithm without such 
ability, and networks in average are “better” than networks ob-
tained by NEvA algorithm without adaptive Pm.  

TABLE I 
RESULTS FOR XOR P ROBLEM 

 Average number 
of object function 

evaluations 

NH NC Population 
size 

NEvA 5904,64 4,62 15,3 13 
NEvA (no 

adaptive Pm) 6026,26 4,8 16,22 13 

NEAT1 4755 2,35 7,48 150 
NEAT2 6612 3,12 11,72 150 

CGA 13165,63 4 17 50 
BP 5338,28 4 17 - 

BPM 828,32 4 17 - 
 

For single pole balancing benchmark we compared NEvA 
with GENITOR, SANE and ESP [9] algorithms. Number of 
trials, before successful network is found, was estimated. Re-
sults averaged over 50 runs are presented in Table II. 
 

TABLE II 
RESULTS FOR 1-POLE PROBLEM 

Number of trials Algorithm 
Average Best Worst  

NH NC 

GENITOR 1846 272 7052 5 35 
SANE 535 70 1910 8 40 
ESP  285 11 1326 5 30 

NEvA (no 
adaptive Pm) 

451 37 3872 0,58 5,22 

NEvA 349 67 1027 1,22 6,52 

 
By number of trials NEvA loses only to ESP algorithm and 

performs better than all the other algorithms. Neural networks, 
obtained by NEvA, are much better in all cases. It’s noticeable 
that results for NEvA with adaptive mutation probability are 
better than that of for variant with fixed mutation rate, whereas 



networks are “worse” since number of connections and hidden 
neurons is larger for NEvA results. Note that results of NEvA 
with adaptive mutation rate have better characteristics than 
NEvA with fixed Pm since the difference between the best and 
the worst results is much less. This means that NEvA with 
fully adaptive mutation operator showed more stable results for 
1-pole balancing problem. 

Results for 2-pole problem and information about obtained 
neural networks are shown in Table III. Results for evolution-
ary programming is taken from [11], for SANE and ESP from 
[9], for algorithm NEAT from [5]. Results were averaged over 
50 runs, and results  of NEAT algorithm were averaged over 
more than 150 runs [5]. There is no information in [5] about 
average number of neurons and connections for NEAT, but the 
range of these parameters is known, so their values seem to be 
relatively small. 

TABLE III 
RESULTS FOR 2-POLE PROBLEM 

Algorithm 

Average 
number of 

trials 

Population 
size 

NH NC 

Evolutionary 
programming 

307200 2048 N/A N/A 

SANE 12600 200 N/A N/A 
ESP  3800 200 5 35 

NEAT 3578 150 N/A 
(0–4) 

N/A 
(6–15) 

NEvA (no 
adaptive Pm) 

3777 59 1,4 7,24 

NEvA 2177 40 0,74 7,7 
 
The performance of NEvA without adaptive Pm is compara-

ble with that of ESP and NEAT. The results for NEvA with 
fully adaptive mutation mechanism surpass the results for all 
the other algorithms. Co mparison of two variants of NEvA 
shows that for 2-pole balancing problem adaptation of muta-
tion probability allows to leave less “adaptive” variant behind. 
Results for network structures are quite interesting. Number of 
hidden neurons is less for NEvA with adaptive Pm whereas 
number of connections is larger. Note that networks of NEvA 
with adaptive Pm seem to be better then networks obtained by 
NEAT, although NEAT uses speciation which allows to get 
compact solutions. It’s hard to give a definite answer for this 
circumstance because results for XOR task are different but, 
probably, the following feature of NEvA can explain some 
things. 

One of the peculiarities of introduced algorithm is that con-
nections and neurons can be deleted in result of mutation. The 
side effect here is a probable isolation of some less-informative 
inputs in obtained solution. For example in pole balancing 
problem the information about cart speed and acceleration is 
not obligatory to balance poles successfully. So the neural net-
work inputs correspondent to such signals  can be deleted. For 
2-pole balancing problem we obtained the following results 
(over 50 runs) of inputs deletion: 

1) NEvA without adaptive Pm: 1 input for cart movement 
characteristics was deleted 7 times, 1 time both inputs about 
cart movement have been deleted; 

2) NEvA with fully adaptive mutation operator: 8 times al-
gorithm deleted 1 input, and in no run 2 inputs were deleted. 

This effect is not guaranteed but can be quite a bonus of 
course if the population evaluation procedure is correct and/or 
the training data is sufficient. Thus there is always an opportu-
nity to make a “rollback” in evolution of growing neural struc-
tures to look for solution amidst lesser complex network to-
pologies. Likely, this circumstance makes rather significant 
impact on average number of hidden neurons and number of 
connections. For XOR task there was no insignificant inputs so 
the initial topology (the one without hidden neurons) could not 
be simplified. 

There is a lot of work to do to improve the introduced algo-
rithm. Our next goal is to try to implement adaptive population 
sizing in order to make the NEvA algorithm as autonomous as 
possible. All other parameters (crossover operator, selection 
and so on) seem to work well when their characteristics are 
fixed. Besides since the parameters of genetic algorithm have 
very complex interactions it’s very hard to try to tune them all 
“on-line”. We’ve already done some preliminary experiments 
with population sizing for genetic algorithm. The first results 
are quite interesting. It seems that GA starting with rather large 
population of size N1, which decreases steadily to size N2, 
performs better than GA with small initial population of size 
N2 that increases up to size N1. In other words it seems that the 
first generations of evolution (when population sizes are close 
to either N1 or N2) are more valuable than the later ones, pos-
sibly, because a probability to find a search space area with 
high fitness is larger at the beginning. 

Other significant “milestones” are to: 
1) Apply NEvA for tasks, where solutions with recurrent 

connections are necessary. Such tasks are, for example, 1 and 2 
poles balancing without information about speed of cart and 
poles, so that solution network should have some me mory to 
manage to keep poles on the cart. 

2) Investigate generalizing capabilities of the networks ob-
tained by NEvA algorith m. The generalization property is cru-
cial for classification problems  enabling successful classifica -
tion of the “unknown” input data. 

3) Test algorithm on tasks where large number of input and 
output neurons for resulting network is required, to examine 
adaptive mutation operator behavior more thoroughly. As an 
alternative it’s possible to suggest a task where “long” evolu-
tion (more than 200 generations) is required. This is required to 
test adaptive mutation technique on complex networks. 
 

VI. IMPLEMENTATION 
The introduced algorithm is implemented to comply with the 

architecture of the software environment “GA Workshop” 
briefly described in [13]. The notion of the “GA Workshop” is 
to separate GA from the problem solved and the processing of 
run data with use of design patterns [14]. General scheme of 
this environment is presented on Fig. 5. 

Thus it is possible to implement new tasks without, in most 
cases , any changes in GA source code. And vice versa: one can 
bring new features into GA implementation without any modi-
fications in the other blocks of the environments. Although 



“GA Workshop” is supposed to be used for research purposes 
its architecture allows easy implementation of many applica-
tions to solve real-world tasks. 
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Fig. 5. “GA Workshop” architecture 

 
At the time “GA Workshop” is under construction, although 

it is already possible to use it for researches. We have already 
used this environment for the investigation of GA with simple 
dynamic sizing scheme, experiments with NEvA algorithm, the 
study of quasi-species evolutionary model by Nobel Prize win -
ner M. Eugen and for some other problems . For now there are : 

1) Three different variants of GA , which include “standard” 
GA, compensatory GA  [15] and NEvA algorithm introduced in 
this paper. 

2) There are 5 different crossover operators for the “stan-
dard” and compensatory GA and 4 different crossover opera-
tors for NEvA. 

3) Different selection strategies are also implemented. By 
now there are 4 widely used selection strategies in “GA Work-
shop”. 

4) There are 12 benchmark problems , including 7 numerical 
optimization tasks, 2 binary combinatorial tasks and 3 tasks for 
NEvA algorithm. 

5) Parameters of GA run (population size, genetic operators 
type and probabilities, different stop criteria) as well as pa-
rameters for the all before mentioned components can be set in 
numerous combinations allowing thorough examination of the 
performance of GA with different characteristics. 

The following data is available for analysis  of results of mu l-
tiple independent runs of GA: 

1) Data that describes each generation of GA. The averaged 
fitness distributions for each generation of GA are available 
written in either frequencies table or in histogram with prede-
fined number of categories. 

2) Data that describes  GA behavior. This includes the dy-
namics of averaged mean, the best and the worst fitness value 
and also the dynamics of averaged square deviation of fitness 
in population. Also the information about time per run in milli-
seconds is output to estimate GA performance. 

3) Data that describes obtained solutions. There is the num-
ber of object function calculations until solution is found and 
the time costs in milliseconds. All solutions and some data 
describing additional properties of the solutions if there are any 
are output into separate file for further analysis and use. 
 

VII. CONCLUSION 
Results of experiments showed that NEvA performance is 

comparable with results of other algorithms  for the reviewed 
problems (XOR problem and full information pole balancing). 
Due to adaptive selection of the type of mutation there is no 
need in direct global limiting variables or deterministic rules 
for network structure evolution, because addition or deletion of 
the new elements performed depending on individual peculiar-
ity of each phenotype. Adaptive mutation rate caused increase 
of performance in comparison with NEvA with fixed Pm (up to 
40% for 2-pole balancing task), although resulting networks 
were slightly worse for 1-pole balancing problems. Use of mu-
tation that deletes connections can help to get rid of insignifi-
cant network inputs thus decreasing a search space complexity. 
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