
181

THE INFLUENCE OF POPULATION SIZE AND SEARCH
TIME LIMIT ON GENETIC ALGORITHM

Yuri R. Tsoy
Department of Computer Engineering,

Tomsk Polytechnic University,
84, Sovetskaya street,

Tomsk, 634034, Russia,
Tel: +7 3822 418912, Fax: +7 3822 419149,

E-mail: qai@mail.ru, qai@sibmail.com

Abstract
Genetic algorithms use numerous parameters in their work. Most researches investigated
different selection strategies and genetic operators and their influence on schema dynamics,
but only few of them tried to understand deeply influence of population size and generations
number limit. In this paper we will try to take a deeper look on the problem of the
population size and limit of generations given for the search of the solution. This research
involves investigation of GA’s behavior on the different types of functions. These include
functions with many optimums, functions with limits in search space (non-linear
programming tasks) and NP-problem functions. Author is going to show that population size
increase improves the performance of GA and affects results more than change of
generations number limit.

Keywords: genetic algorithm, population size, generations limit

1. Introduction
By now following parameters of genetic algorithm (GA) been investigated thoroughly:

selection strategies, different variants of genetic operators, encoding problems, various models of
GAs but problems of population sizing and generations limit, needed to find a solution, have not
been given much attention. Partially it can be explained by a stochastic nature of genetic algorithm
and absence of methods that allow predicting when and on what conditions algorithm having
definite parameters will convergence. We can only say more or less confidently that the solution
will be found or, vice versa, we are likely to fail.

The problem of proper population size selection can be compared figuratively with a
problem of choice human group size for decision making. If group numbers is small then complex
problem solution is hard to find. From the other side, in large group, when everybody is standing
upon his point of view, we can expect, that on initial phases results will be worse because of
discords and disputes, but final solution will be more successful outcome.

Genetic algorithms are successfully implied for optimization tasks with large number of
parameters and hardly formalizable problems. There is a de-facto standard for the evaluation of the
algorithm such as a number of target function evaluations. The higher bound of this characteristic
can be calculated via following equation:

FE = G·N,

where N – population size, G – generations number limit, used for the search of solution. From one
hand, the more population size, the better solution found, but from the other hand, increase of the
number of individuals in population can lead to the significant growth of target function
evaluations.

(1)

mailto:qai@mail.ru
mailto:qai@sibmail.com

182

This in its turn will influence on the overall performance rating of genetic algorithm. A question
appears what is better, large population and small generations number or, vice versa, reduced
population size accompanied by larger number of generations, that we need to find a solution.
Proper choice of population size and generations number would allow us to analyze GA more
precisely in general terms and avoid unnecessary computations.
3. Earlier publications

There were some earlier publications by other researchers, who investigated problems close
to claimed. In [1] an empirical formula derived for the computation of population size for the
OneMax problem solution using such data as number of loci n, initial probability to meet desirable
allele p0 and selection intensity I. The formula gained looks as follows:

.4.18.0),11(ln)30.707.1228.10(1*
0

2 <<−⋅⋅+−+= I
p

nnIIN

Also in [1] a formula for the calculation of the generations, needed for the convergence of
population, was derived:

.))12arcsin(
2

(0 I
npGENc ⋅−−≈

π

Using results gained in [1], Cvetković and Mühlenberg drew a conclusion that number of
individuals, needed to find a solution, is much larger for proportionate selection strategy, then that
of for the truncation selection. It should be noted that that work does not take into consideration
mutation rate and algorithm used only one-point crossover.

In publication [2] Spears and De Jong investigated joint influence of crossover type and
population size on the performance of the genetic algorithm. They used an analysis of strings
disruption by crossover and its interaction with population sizing. Following result was gained: in
small populations more disruptive crossover (uniform and n-point crossover operators) is more
effective, and use of less disruptive crossover (1- and 2-point crossover) in large populations lead to
better performance. They also showed that this tendency does not have a single meaning and
depends on complexity of the task.

The work [3] is very likely to be one of the first studies where question about sizing of the
population was raised. The notion of genetic drift (genetic noise) was introduced there also. This is
an effect based on stochastic property of the algorithm. Consider having population of single digit
binary strings, the first half of them is “1”, and the second one is “0”. If we will choose strings by
chance for the creation of new generation, we can expect getting equal quantity of different strings.
In real as generations passed we will observe increase of heterogeneity, which can finally lead to
the disappearance of the definite type strings from population. This phenomenon of loss of strings
and their parts was called allele loss. In his work De Jong drew a conclusion that increase of the
population size can reduce not only allele loss, but also genetic drift significantly. In [3] also shown
that in large populations fitness grows more slowly on initial phases but overall result will be better.

In [4] equation for population sizing of simple genetic algorithm is derived based on the
statistical decision making. The choice between two competing building blocks with different
fitness and deviation is investigated. That Goldberg, Deb and Clark show that better results can be
achieved on larger populations. An assumption about polynomial convergence time (quadratic or
cubic) was also made.

On the base of analyzed publications following conclusions can be gained:
1. Increase of the population size improves performance of the genetic algorithm since it

reduces genetic drift, allele loss and increases parallelism of the algorithm.
2. The role of generations limit and its dependency on the population size remains not clear.

4. Two rates

(2)

(3)

183

Let’s have a look what happens when genetic algorithm works. We are given some search
space where global and a set of local optimums are located. We also have a number of points in this
space such that each point is an individual in population. Fitness of each individual is proportional
to its distance to the optimums so that distance to the global optimum has a priority. We should
recombine coordinates of individuals from generation to generation to get the point that is nearest to
the global optimum. Recombination should be mostly applied to the fitted individuals.

Initially individuals distributed chaotically without any order and tendency. As some
generations passed we can see quite a different picture. Individuals represented by points in search
space grouped near optimums and only few of them “strayed from the herd”. These are can be
victims of mutation or unsuccessful recombination of coordinates of better fitted parents. Also as
population gathers near optimums it’s becoming more uniform in terms of coordinates values. So
we have a picture that is similar to the starting one: we have search spaces, optimums and points
representing individuals in this space. Everything is repeating but with one exception – population
is more uniform now and values of coordinates can not provide us much heterogeneity in search via
recombination as it was in the beginning. But it still can be enough to perform well in reduced
search space and to reach the global optimum or some near point.

Thus two rates can be singled out:
1. the rate of search space reduction that shows how fast algorithm processes search space

and locates areas with optimums;
2. the rate of population convergence that takes place because of allele loss and sometimes

because of information encoding method (Standard Binary encoding or Grey codes).
A suggestion can be made that genetic algorithm will perform well and achieve good results

if rate of population convergence less than rate of search space reduction. We should note that these
notions can’t be compared directly and should be estimated in terms of generations number needed
to solution be located with allowed error or more than most of population contents become
homogenous. If suggested condition is not fulfilled than search of global optimum depends on luck
and good chance.

Let’s see how population size and generations limit can be estimated using foregoing
reasoning. If we have larger population the rate of population convergence will be less than that of
in small-size population because of initially increased variety of individuals. This statement is
supposed to be correct for the average fitness of population. From the other hand we can expect that
search space reduction rate is also reduced but in real it is a fact only in the first generations. Later
as more high-fitted points have been arrived (when their number will be greater some “threshold”)
other individuals will gather to these “leaders” quickly. In small populations rate of convergence is
higher with recombination abilities not better then that of in large populations, assuming usage of
standard crossover operators such as 1-, 2-, n-point and uniform crossover. So greater generations
number is not needed since population becomes homogenous quickly. In case of large population
too strict limit for the search time can force algorithm to stop without having enough time to realize
its search possibilities.

One more suggestion is that population size has some “critical” value after which increase of
population size will not improve search time (number of generations) and results. It would be
logical to suggest that optimal population size less than this “critical” value.

Also note that high mutation rates can help avoid premature convergence in small
populations but this method can also lead to the significant expansion of search space.

5. Experiments
In experiments canonical GA with 1-point crossover and without mutation was used.

Mutation operator was excluded to avoid additional stochasticity. Two different types of
experiments took place. In the first one the number of target function evaluations was limited by
51200 and population size was as a variable parameter together with variable generations’ number

limit. In the second type experiment number of generations was limited by 200 but population size
value was also variable and similar to that of in the first type experiment.

Let’s denote combination of population size and generations limit as NxG. For example,
512x100 means population of 512 individuals that evolve for 100 generations. Taking into
considerations foregoing run conditions the following parameters was set to examine GA’s behavior
(for OneMax-problem minimal population size was 32 due to specific initialization):

1. First type experiment: 8x6400, 16x3200, 32x1600, 64x800, 128x400, 256x200, 512x100,
1024x50, 2048x25, 5120x10, 10240x5, 12800x4, 25600x2 – individuals x generations’ number.

2. Second type experiment (200 generations limit for all cases): 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 5120, 10240, 12800, 25600 – individuals in population.

Following functions were taken to test genetic algorithm behavior in different conditions:
1. 32-bits OneMax problem. The task is to construct binary string of 32-digits from given

population with “1” in each position. The population was initialized the way that each individual
housed only one “1” and distribution of “1” in each position over the whole population was
uniform.

2. 3-peak SAT-problem suggested by W. Spears [5]. This is a boolean satisfactory NP-

complete problem and looks as follows:
(a1Λ…Λa30)V(a1Λa1Λ…Λa30)V(a1Λa1Λ…Λa15Λa16Λ…Λa30).
184

3. 50-variables Rastrigin’s function. The formula for this function (minimization task):

.50),12.5;12.5(,))2cos(10(10)(
1

2 =−∈−+= ∑
=

nxxxnxF
n

i
ii π

4. Non-linear programming task with 2-variables and non-convex limitations. Target
function (maximization task):

;),(2
2

2
121 xxxxF +=

the set of limitations:

≤≤
≤≤

≥−

≤−−

.047.20
,047.20

,0

,01

2

1

2
12

2
12

x
x
xx

xx

6. Results and discussion
The results of runs are illustrated in the figures 1-4. Each figure contains two plots: one

represents case when search was limited by number of target function evaluations (“FE Limit”) and
another one shows what happens if number of generations for search is the only restricting
parameter (“200 Generations Limit”). Numbers near knot points on the plots indicate minimal
generations’ number gained to achieve corresponding results. For example, in figure 1 when
population of 1024 individuals was used, algorithm needed 49 generations to achieve result of 31
“1”-digits in chromosome string.

(4)

(5)

(6)

185

Fig.1. Results for OneMax32 task Fig.2. Results for 3-peak SAT-problem

Fig.3. Results for Rastrigin’s function Fig.4. Results for non-linear programming task

A general tendency can be observed in all figures if move towards the increase of population
size. At first, a lack of individuals leads to the premature convergence and number of generations
needed to find the best solution using corresponding population size is less than limiting
generations’ number. It doesn’t mean that after finding the best individual search stops. In fact
algorithm by itself doesn’t even “know” about new champion discovered and simply continues its
work. As numbers of population grows results are improved. In case when there is a target function
evaluations limit a lack of generations prevents algorithm from further search.

In terms of foregoing rate of reduction of search space and a rate of population convergence
we can see firstly greater rate of convergence and then, when population is large enough, greater
search space reduction rate.

Also a following tendency in change of generations’ number enough to locate some good
solution can be singled-out. Firstly, this number increases as population and fitness grows (function
minimizes for Rastrigin’s function). Then after some “critical” point passed it reduces till boundary
value achieved and fitness of the best solution doesn’t change. This can be seen in figures 1, 2 and
4. It should be noted that for the OneMax-problem value of generations’ number after “critical”
point is approximately 44 although minimum possible is 5. This is the illustration to the influence of
the genetic drift on the results. Population for the first task was initialized such a way that genetic
drift had an advantage. It also causes the fact that target string of 32 “1”-digits wasn’t constructed
by the algorithm (the best result is 31 “1”-s string). In case of Rastrigin’s function algorithm

186

performed not very well due to complex surface with many minima of this function that’s why
algorithm continued search process with increase of population size. The best result gained for
25600x200 combination is 1772.46 while global function minimum value is 0.

In general increase of population size tends to give better solution even if generations’ limit
becomes tighter. Thus if we are given some number of target function evaluations tuning of the
population size can help achieve good results without excess expenditure of computational
resources. But it can be seen that although population size increase improves performance of GA
the cost is also can be high. The number of function evaluations increases dramatically: to reduce
number of generations for 3-peak SAT-problem from 32 to 15, population size grows for 16 times
from 64 to 1024.

The problem of choice of the appropriate population size and calculation of generations’
number enough to gain satisfactory result can be solved only after mathematical model that
describes dynamical behavior of GA developed. A suggestion can be made that there is no precise
formula that gives one and the only good number for best population size and generations limit,
because there too many variants and combinations of different genetic operators, selection
strategies, encoding types and so on to take into consideration all of them.

6. Conclusions and further work
Results achieved in this work show that in most cases larger populations with less number of

generations are better than small populations accompanied by greater time for search.
The size of population is one of the significant parameters of genetic algorithm since it has

direct influence on its search abilities. In this work an attempt was undertaken to show that using
one and the same number of function evaluations the case when population has larger size is better
in terms of results gained. But excess of individuals can be bad for the computational difficulty
dependent to the implemented algorithms because some selection strategies use ordering or ranking
of population according to the fitness of its individuals. A question about excess of generations also
arises. After some generation population does not evolve or does evolve but very slowly and
insignificantly, when 50 and more generations needed to reach a small improve in result. In this
case increase of population size have a sense since it brings variety and makes search process more
active.

A difficulty in research is that there is no analytical formula for search space reduction and
for population convergence. The main cause is a great variety of GA implementations and necessity
to take into account numerous parameters that have complex influence on the whole GA
performance. This problem needs further investigation. Probably creation of formulas for reduction
of search space and for rate of population convergence could give us the sought for mathematical
model of genetic algorithm.

References
[1] Cvetković, D., Mühlenbein, H., 1994, The optimal population size for uniform crossover

and truncation selection (Technical report 94-11, GMD).
[2] De Jong, K. A., Spears, W. M., 1990, Int'l Workshop Parallel Problem Solving from

Nature, 38-47.
[3] De Jong, K. A., 1975, An Analysis of the Behavior of a Class of Genetic Adaptive

Systems, Doctoral Thesis, (USA: Department of Computer and Communication Sciences,
University of Michigan, Ann Arbor).

[4] Goldberg, D. E., Deb, K., and Clark, J. H., 1991, Genetic Algorithms, Noise and Sizing
of Populations, (University of Illinois).

[5] Spears, W. M., 1990. Using Neural Networks and Genetic Algorithms as Heuristics for
NP-Complete Problems, Masters Thesis (Department of Computer Science, George Mason
University, Fairfax, Virginia.).

187

[6] Whitley, D., 1994, Statistics and Computing, No. 4, 65-85.

Biography: Yuri R. Tsoy was born in 1981. In 1998 he entered the Department of Computer
Engineering, Tomsk Polytechnic University. In 2002 received degree of Bachelor of Techniques
and Technologies. Now he is a 1-st year magistrant at the Department of Computer Engineering.
Research interests: genetic algorithms, artificial neural networks, multi-agent intellectual systems,
artificial life, psychology and philosophy of cognitive processes.

