USING DESIGN PATTERNS FOR
DESIGN OF SOFTWARE
ENVIRONMENT FOR RESEARCHES

IN GENETIC ALGORITHMS
Yuri R. Tsoy, Vladimir G. Spitsyn
Department of Computer Engineering,
Tomsk Polytechnic University,

84, Sovetskaya street, Tomsk, 634034, Russia,
Tel: +7 3822 418912,

Fax: +7 3822 419149,
neuroevolution@mail.ru

Abstract

Genetic algorithms are known as common and
robust optimization concept. One of their main
disadvantages is the lack of theoretical and practical
research results. We are going to introduce
program environment “GA Workshop” project that
will have convenient tools for research purposes.
This software is designed with use of design patterns
approach, which guarantees further extendibility,
flexibility and scalability of introduced program
product. This software will be distributed free with
its source codes for research and education centers.

Keywords: genetic algorithms, software design, design
patterns.

1. Introduction

Rapid informational technologies development in
20-th century significantly extended scientific research
making incredible machine resources available for
modeling and complex calculations. Along with this
fact an increase of experimental data requires complex
programs to process these results. Moreover almost any
specific problem requires specific mathematical tools
and has different parameters to visualize.

The main goal of this work is to design a software
environment with following characteristics:

1. Ability to research genetic algorithm properties
and its performance for wide variety of algorithm
models and tasks.

2. There should be ability to vary parameters of
genetic algorithm without deep dependence on
algorithm model and chosen task.

3. Ability to visualize and process data of
experiments.

4. Architecture of program should be as flexible as
possible. This feature provides support of future
extensions and use of components designed by other
developers.

For implementation of the last feature we decided to
use design patterns. They represent in many ways
common methodology for design of reusable software.

All patterns names that will be mentioned in this paper
are taken from [1].

2. Architecture description
Introduced program consists of 5 blocks (fig.1):

AN

Genetic
algorithm

Data analysis
block

Interface

Task
environment

Visualization
block

Y4

Fig. 1. Program structure

1. Interface — needed to bind and isolate all other
blocks. Implements all data conversions necessary for
other blocks cooperation.

2. Genetic Algorithm - implements certain

algorithm and its workflow control.

3. Task environment — implements environment for
the given problem, where all potential solutions, got by
some algorithm are evaluated.

4. Analysis block — implements algorithms for
analysis of genetic algorithm and solutions data.

5. Visualization block — implements routines
necessary for output of experimental results in
graphical representation.

The central part that allows significant enhance of
flexibility and extendibility of introduced program
system is Interface. Since it’s present it gives an
opportunity to isolate blocks from each other to make
them as independent as possible. Thus extendibility and
flexibility are provided.

Each of other blocks includes following obligatory
parts (fig. 2):

Processing Control 1> Control ©
unit unit adapter 8

— -l =

v e

Internal < =
data J -

Figure 2. General block structure



1. Control unit. As blocks can be of any internal
structure and possibilities they should provide the way
to control their work.

2. Processing unit. Should implement all operations
specific for given block.

3. Internal data. This part represents data in formats
used by block for proper functioning.

To make interaction between blocks possible
Interface implements adapters that convert data from
one internal block representation to another and also
delegate functions calls. In most cases control adapter
implements only the very general interface functions
such as block mount and dismount, initialization, and
data transfers. Any operations specific for certain block
should be implemented via control and processing unit
of this block.

2.1. Genetic algorithm block description

As this software complex is designed for purposes
of researches in genetic algorithms we will take a more
thorough look at “Genetic algorithm” block.

There are following parameters in implementation
of genetic algorithm that can vary in rather wide range:

1. Genetic representation (string of loci, array of
genes, array of complex structures).

2. Initialization of population (random, user-
defined, combined).

3. Selection
truncation).

4. Reproduction strategy ((semi)random parent
individuals, mating pairs, one or two offspring).

5. Genetic operators (different types of crossover
and mutation, task specific operators).

6. Next generation formation properties (elitism,
lamda+nu strategy).

Listed parameters to be implemented independently
from each other. Use of FactoryMethod and
TemplateMethod patterns make it possible to put them
together.

This block should not implement any data
processing (for example, statistical) and visualization.
If there is need of them then appropriate calls to
interface should be made with correspondent data
transfer. An Interface since it implements Mediator
pattern will then call Analysis and Visualization block
routines and will provide all necessary data conversion
via correspondent adapters. Thus a transparent
interaction between blocks is provided. Any on-line
data processing can be available via Observer pattern
applied to parameters of genetic algorithm.

Collaboration with Task Environment block is
implemented via pass of parameters from genetic
representation of some individual from Genetic
algorithm block to the Task Environment block. All
necessary data conversion made in Interface just like in
case of data processing. Feedback about fitness of

strategy  (roulette, tournament,

individual passed to the Genetic Algorithm block.
Evaluation of success of individuals should be
implemented inside Task Environment block.

3. Flexibility and extensibility
Designed architecture allows collaboration of
different blocks even if they were not designed to work
together. Set of adapters implemented in interface helps
to use new block easily without serious modifications
in interface and without any modifications in other
blocks.

One block can behave like different ones. Thus
blocks can be combined. For example data processing
and visualization blocks. But for other parts of
introduced software there are still 2 separate blocks
with different functionality and data formats.

From the other hand its easy to imagine situations
when there are multiple representations of one block. In
other words several independent blocks can operate
like they are parts of one bigger block for example in
case of complex computations.

Given architecture gives an opportunity to modify
separate blocks without any modifications in other
parts except appropriate adapter for Interface. Anyway
structure of system does not change. Hence it’s
possible to modify different parts not thinking about
compatibility problems because we can always write
new adapter. This is much easier then trials to take into
consideration all other blocks structure and data
formats.

Inner organization of Genetic Algorithm block
provides rather easy way to vary inner properties of
different algorithms and investigate its performance.
One more advantage is that different parts of algorithm
are reusable for different models.

Conclusion

We should note that introduced architecture can be
applied with minor modifications for research in almost
any problem area.

Our work is only started. First release will likely be
available in the 2-nd quarter of the next year. We are
going to distribute introduced software without any
charge with condition that it will be used for research
purposes only. For the convenience of future users
source code in C++ and documentation will be
available too.

References
[1] Gamma E., Helm R., Johnson R., Vlissides J.
Design Patterns: Elements of Reusable Object-
Oriented Software, Massachusetts: Addison-Wesley,
1995.
[2] Whitley D., A genetic algorithm tutorial, 1994,
Statistics and Computing, 1994, n4, p. 65-85.



