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Abstract
A new subclass of genetic algorithms (GA) is in-

troduced. The primary idea of its creation is to extend
searching abilities and prevent premature conver-
gence. Some unexpected results such as inverse de-
pendence of algorithm performance from population
size and possible solution of some of the direct en-
coding problems are discussed.

Introduction
Process of the challenging task solution is often

similar to evolution of ideas. At the beginning, on the
foundation of given facts, a hypothesizes are formu-
lated, then they are verified, elaborated, also their com-
binations and variations can appear. Success of variants
and their further destiny depends on how well they fit
for the task. In the long run either an answer is found or
we have to admit that our solution search is stuck and
we need to start from the very beginning.

Genetic algorithms (GA) are known as quite
common and robust optimization concept. As they use
evolutionary mechanisms to evolve good solution
from population of potential ones, they have similar to
mentioned before problem. In evolutionary computa-
tions it is called premature convergence and its feature
is degeneration of population when evolution of solu-
tions is merely stopped.

One of the main causes of this phenomenon is al-
lele loss that means that there are no differences for
certain loci in chromosomes all over the population.
As generations pass the number of such loci can in-
crease and it can cause premature convergence. One
of the causes of allele loss is prevail of certain schema
in the population. If this schema is highly fitted then
we can expect with certain probability that in several
generations most of population will correspond to this
schema. From one hand it helps to lead evolutionary
process but from another hand it involves loss of di-
versity. It was noticed that increase of population size
and mutation probability weakens allele loss [1]. The
notion is to have highly fitted competing schemas in
every generation. We are going to show further that
the same effect can be achieved with use of radically
different technique.

Algorithm description
In general suggested algorithm doesn’t differ

much from canonical GA (CGA) described in [2]. The
same proportional selection strategy and one-point
crossover operator are used. Distinctions are follow-
ing – no mutation process, use of elitism technique

and compensatory strategy. The last distinction is the
key feature of the introduced algorithm.

Compensatory mechanism starts working after
selection of strings to mate is done. Lets denote N' –
number of strings selected, a'ik – value of loci k in the
string i, then k-th compensatory string element at gen-
eration t is defined according to the following for-
mula:
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here RB – random boolean variable. Thus compensa-
tory string is an inversion of the prevalent loci string.
Example of such transformation is shown in the figure
1. Upper string houses prevalent loci values, for ex-
ample digit with index 5 is “1”, and it means that
number of “1” bits is more than that of “0” bits in the
corresponding position all over the population.

Figure 1. Compensatory string construction
After compensatory string is constructed we then

mate it with randomly chosen string selected for re-
production to produce offspring. Next generation is
formed from this posterity, one best string from pre-
vious generation and a compensatory string. Use of
such strategy can guarantee GA against premature
convergence as we artificially compensate prevalence
of “0” or “1” in any position in population. This is the
reason to call introduced algorithm a “Compensatory
Genetic Algorithm” (CoGA).

Experiments and discussion
To test performance of CoGA a set of functions

was taken. Following functions included: ONEMAX,
Sphere function (n=30) and Rastrigin’s function
(n=50). ONEMAX task requires a string of “1” to be
assembled during evolution. 16 and 32 bit strings
were used. Sphere function is a simple unimodal
function whereas Rastrigin’s function used in experi-
ments has 1050-1 local optima. We will compare re-
sults of CoGA with that of CoGA without elitism and
canonical genetic algorithm (CGA). All algorithms
were limited to 51200 target function evaluations so
that the bigger the population size, the smaller number
of generations population evolves. For example
population of 512 strings has 100 generations to
search the solution. For each task 5 runs were made
and best results picked.

Results of experiments are shown in figures 2-5.
Vertical axis holds target function values.

On simple ONEMAX problems with populations
of 256 strings and more CGA shows better or equal
performance by comparison with CoGA.
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Figure 2. ONEMAX 16 task

Figure 3. ONEMAX 32 task

Figure 4. Sphere function

Figure 5. Rastrigin’s function
In case of more complex Sphere and Rastrigin’s

functions CGA shows worse results in all runs. CoGA
without elitism performs almost identically in all
cases for ONEMAX problems.

As it can be seen CoGA’s performance decreases
as population size growths. To demonstrate it best
results for Sphere function task achieved at 25-th, 50-
th, 100-th and 200-th generation for populations of
different sizes are given in table 1.

Table 1. Population size dependence
GenerationPopul.

size 25 50 100 200
8 97.601 68.9143 44.9022 19.5031

16 52.764 44.264 21.1777 12.3515
32 83.3845 43.7421 32.5175 16.1648
64 77.3846 45.1136 39.9596 32.4642

128 76.8295 55.1895 54.5362 44.4661
256 106.738 106.738 98.1128 91.8086
512 121.178 107.441 97.9799 -
1024 112.807 104.868 - -
Populations with small number of strings evolve

much faster and their results are better then results of
large populations. To explain this effect a suggestion
can be made that in large populations there is a less
significant bias of prevalent loci but surely this re-
quires a much more thorough investigation.

As a side effect a problem with direct encoding
when numbers 2n and (2n-1) differ much in binary
representation can be possibly solved. When we con-
struct compensatory string we “automatically” over-
come this problem. If we have prevalent genes of 2n

type then compensatory string will likely house (2n-1)
type number and vice versa.

At first sight it seems unnatural for such algorithm
to work because GAs considered to evolve highly
fitted schemas and we seem to impede this process. It
is surely so but there is no guarantee that prevailing
schema is best of all possible ones so we can try to
search for other schemas and compensatory strategy
gives good opportunity to do this. Besides current
good schema is not disrupted because of elitism.

Conclusion
Introduced compensatory strategy brings nice

searching abilities and effective against premature
convergence. Implementation of this strategy involves
some interesting results when population size doesn’t
matter and the main thing, at least for used tasks, is
the number of generations a population should evolve.
In large populations speed of evolution is slow and
probably because of insignificant prevalent loci bias.

In general performance of CoGA is better then
that of canonical GA. Future work to be done to im-
prove performance possibly by implementation of
other selection strategy and some modifications in
compensatory strategy.
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