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Abstract

Within Genetic Algorithms (GAs) the mu-
tation rate is mostly handled as a global,
external parameter, which is constant over
time or exogeneously changed over time.

In this paper a new approach is presented,
which transfers a basic idea from FEwvolu-
tion Strategies (ESs) to GAs. Mutation
rates are changed into endogeneous items
which are adapting during the search pro-
First experimental results are pre-
sented, which indicate that environment—
dependent self-adaptation of appropriate
settings for the mutation rate is possible
even for GAs.

CESsSs.

Furthermore, the reduction of the number
of external parameters of a GA is seen as a
first step towards achieving a problem—de-
pendent self-adaptation of the algorithm.

Introduction

Natural evolution has proven to be a powerful mecha-
nism for emergence and improvement of the living be-
ings on our planet by performing a randomized search
in the space of possible DNA-sequences. Due to this
knowledge about the qualities of natural evolution,
some researchers tried to use the basic mechanisms
of evolution as a basis of optimum-seeking techniques
in case of vast search spaces.

In general, the algorithmic models of Darwinian
evolution maintain a population of individuals (bio-
logical terminology has been adopted in this field).
The population is able to adapt to a given (static
or dynamically changing) environment by randomized
processes of selection, reproduction, sexual recombi-
nation, and mutation. The environment provides a
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quality information (fitness) for the individuals, and
the selection process favours the individuals of higher
quality to survive (“survival of the fittest”). Even the
reproduction process often favours structures of higher
quality. Thus, during the evolution the average qual-
ity of the population increases, hopefully leading to an
optimum solution.

Algorithms following this general approach have
been summarized under the term Evolutionary Algo-
rithms elsewhere, e.g. see Mithlenbein (1991) or Béack
and Hoffmeister (1991b). They include the Genetic
Algorithm (GA) by Holland (1975) and the Ewolu-
tion Strategy (ES) by Rechenberg (1973) and Schwefel
(1981) as main representatives. At first glance they are
mainly differing with respect to the structure of the
individuals, but ESs benefit from the additional capa-
bility of learning on the level of strategy parameters
by self-adapting them during the search (second-level
learning). A detailed comparison of both algorithms
was presented by Hoffmeister and Back (1991).

Within this paper a first effort towards incorpo-
rating the feature of self-adaptation into GAs by us-
ing adaptive mutation rates is presented. The general
idea is to depart from global, fixed control mechanisms
as used in GAs and instead to decentralize control by
spreading it over the individuals. Additionally, control
rules are no longer fixed within this distributed control
approach, but control is subject to individual adap-
tation, thus facilitating a self-organizing behaviour
of the population. Individually emerging behaviour
instead of global control was identified by Langton
(1989) to be one of the main characteristics of Ar-
tificial Life, hence the border (if any) between GAs
and AL dissolves by means of self-adaptation.

Adaptive Mutation Rates

Much experimental work has been done in order to
determine the best setting for the bit-mutation proba-
bility p,, of a Genetic Algorithm, but no clear answer



to this question could be given. Some common set-
tings are p,, = 0.001 (De Jong (1975)), pm = 0.01
(Grefenstette (1986)), and p, € [0.005,0.01] (Schaf-
fer, Caruna, Eshelman, and Das (1989)). The result
of Schaffer et al. has also been formulated as the em-
pirical expression
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where A denotes the population size and [ is the length
of the individuals’ genetic representation. Expression
(1) is similar to that theoretically determined by Hes-
ser and Manner (1991) for a special GA-variant
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which additionally introduces a time-dependency for
pm (e, B, v are constants).

(1)

A time-dependency of mutation rates was first sug-
gested by Holland (1975) himself, although he did not
give a detailed choice of the parameter for the time-
dependent reduction of p,,. Later on Fogarty (1989)
used several time-dependent schedules for p,,, a mea-
sure which remarkably increased the GA-performance.
Both approaches use a deterministic decrease of mu-
tation rates over time, such that lim;—e pm(t) = 0.
In addition, the mutation rate is handled as a global
parameter, i.e. one parameter value of p,,(t) is valid
for all individuals of the population. A general mech-
anism for the adaptation of operator probabilities was
presented by Davis (1989), who used the quality of
the offspring generated by an operator as a measure to
adapt its application probability. However, this tech-
nique runs into credit assignment problems similar to
those identified by Wilson and Goldberg (1989) for
Classifier Systems, when it is tried to reward opera-
tors that set the stage for a later production of high
quality offspring. And even this technique uses a de-
terministic, global control rule for the alteration and
adjustment of the operator probabilities!.

The approach described here fundamentally differs
from these mechanisms with respect to the following
topics:

e Mutation rates are handled as temporal and in-
dividually differing parameters, which are incor-
porated into the genetic representation of the
individuals (encoded as bitstrings).

L An exception working with a really self-adapting crossover-
operator is due to Schaffer and Morishima (1987), who encoded
the crossover mechanism in the genotype of the individuals.
This approach, although dealing with the operator itself instead
of an application probability, is conceptually identical to the
mechanism introduced here.

e Mutation rates are also subject to mutation and
selection, i.e. they undergo evolution as well as
the object variables. No global, deterministic
control for the alteration of mutation rates ex-
ists.

o Mutation rates are initialized at random.

As a result, p,, is no longer an external parameter
of the GA, but it is subject to self-adaptation under
certain circumstances (which will be explained later).

Technically, the implementation works as follows:
For continuous parameter optimization problems of
the form? f : []7_,[a;, b;] — R either 1 or n encoded
mutation rates are added to the genotype, which is
now described as:

({0,1}’ x ({0,1}’)”)
u ({0,1}’ x {0,1}’)

I =
(3)

Here | denotes the length of the representation of a
mutation rate. Furthermore, injective decoding func-
tions Ty 5 : {0,1} — [a, b] exist®, which are mapping
bitstrings of length [ linearly to the real interval [a, b].
For I = >""_, l; an individual a € I can be denoted as
follows:

a = (@11...000...0n1...Qn1,,

d1}1 . .OAZLIA. . ~dn,l .. én,f)
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Then, for the encoding (&;1 .. .o?“») of the i-th mu-
tation rate p;, the mutation rate is obtained by p; =
Fo,1,f(di,1 .. -@i,f)- The new mutation mechanism m :
I — I works as follows:

m((aLl . .an71n,d171 . .dn f)) =
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where Vi € {1,...,n} Yk € {1,...,1}:

B- _ { OAz“C X < FO,l,f(di71 .. .d“)

i,k ke{0,1},x > Loy i@in... &) .
B = ik X < Fo,1,i(ﬁ:i71 - ﬁ:”)

" k€{0,1}, x > Ty fBin--.5;7)

x denotes a uniform random variable on the in-
terval [0, 1] which is sampled anew for each bit posi-

2Due to the binary encoding the object variables are in fact
restricted to intervals [a;, b;]; a;,b; € R.

3Let @ denote summation modulo 2, and assume that a Gray
code is used. Then, I' often takes the form 'y (1 ... ) =

o+ -0 (D0 (Bt a) 2) /(2 - 1),



tion. Also k € {0,1} is a uniform random variable,
determining an allele value each time it is sampled®.
The mutation mechanism first mutates the mutation
rates p; with mutation probabilities p; and then uses
the resulting mutation rates to mutate the correspond-
ing object variable information. This is schematically
shown in figure 1. The special case of only one mu-
tation rate can also be used to apply the mechanism
to discrete optimization problems. In this case, one
mutation rate is valid for all bits of the genotype.

1.) Mutation of mutation rates
\Xl\ ...‘xn‘pl‘ ---\Pn\
[
2.) Mutation of object variables

1] o[ Pl [Pl

Figure 1: Schematic working mechanism of adaptive mu-
tation

The asymptotic behaviour of adaptive mutation
rates can be investigated when neither recombination
nor selection are taken into account. To simplify nota-
tions, let @ = (&y ...a;) be the encoding of a mutation
rate and p; = Fo,l,i(d)/2 be the effective probability
that a bit is changed. Then p,_;, the probability that
mutation of @ by using the bit-inversion probability pa

yields b = (Bl .. .Bf), is given by
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Some special transition probabilities can easily be ob-
tained:

a—a = (1-pa)
Lo 1,b=(0...0) (8)
Po..oy—b = ;;[1(1_ Z):{ O,bigo...og

The set of (Qf)2 possible transition probabilities forms
a transition matrix of the corresponding markov chain.
While p, ; denotes the probability of a one—step tran-

sition, the probability P, _;(n) to reach b from @ af-

4Note, that following Holland (1975) a bit mutation event
is realized here by chosing an allele value at random from the
set {0,1} of possible alleles, in contrast to the often used imple-
mentations which simply mutate a bit by inverting it.

ter n transitions can be calculated by using a theorem
from the theory of markov chains, e.g. to be found in

the book by Gnedenko (1970):

P

r=0

Here bin : {0,...,2' — 1} — {0, 1}' denotes a mapping
to binary representation. Then theorem 1 holds, which
states that (0...0) is an absorbing state of the markov
chain:

THEOREM 1 (Asymptotic Behaviour)

lim Pio.0)() =1 Vae {0, 1y

The proof is given in the appendix. Due to the
absence of recombination on mutation rates and selec-
tion we can not conclude that convergence towards 0
is achieved by our algorithm (in fact, it should not be
intended for mutation rates, because this would lead
to the possibility of a reduction of the dimension of
the actual search space).

While in ESs a meta-mutation rate is used to con-
trol the mutation of mutation rates (see Back, Hoff-
meister, and Schwefel (1991) for an overview, Schwefel
(1981) for an detailed description), experimental in-
vestigations using this mechanism for GAs have not
been as successful as the mechanism described here.

An other precondition for self-adaptation to be-
come effective concerns the selection operator. This
will be discussed in the next section, before we present
experimental results.

Extinctive Selection

A detailed classification of selection mechanisms in
Evolutionary Algorithms has been given by Back and
Hoffmeister (1991a). Here we will focus only on the
topic of extinctiveness, which is important for self-
adaptation of strategy parameters. Let a population
at generation ¢ be denoted as P! = (af,...,a}) and
let ps : I* — [0, 1] be the function determining the se-

lection probabilities of the individuals in a population

(VP =(al,...,a ) : S0, po(al) = 1).

DEFINITION 1 (Extinctive Selection)

A selection scheme is called extinctive:
<= Vt>0 VP = (d},...,a}) Fie{l,...,A}
ps(af) =0



DEFINITION 2 (Preservative Selection)

A selection scheme is called preservative:
< VYVt > 0VP = (d},...,a}) Vie {1,...,A}
ps(aj) > 0

An extinctive selection mechanism definitely ex-
cludes some individuals from being selected, in con-
trast to preservative mechanisms which always assign
selection probabilities greater than zero to all indi-
viduals. Representatives for preservative selection are
proportional selection as introduced by Holland (1975)
and Baker’s (1985) ranking, while (u,A)-selection as
used by Schwefel (1981) in ESs is extinctive (only the u
best individuals are allowed to be selected). The terms
(1, X )-proportional selection and (u,\)-linear ranking
are used here to describe the extinctive variants of
proportional selection and ranking, while for (u,A)-
selection the term (i, )-uniform ranking is used. The
latter term was introduced by Béack and Hoffmeister
(1991a) and emphasizes the fact, that (u,A)-selection
is a special case of (u,A)-linear ranking selection.

Experimental Results

For testing the self-adaptive capabilities of the ap-
proach the objective functions f; (the sphere model,
used by De Jong (1975) and Schwefel (1981)) and fi5
(the weighted sphere model®, used by Schwefel (1981))
as described in table 1 are used as representatives of
relatively simple, unimodal problems. These functions
make it possible to study whether the amount of mu-
tation rate information that has to be learned should
be different. Additionally, the multimodal function f~
(generalized Rastrigin’s function, based upon the two-
dimensional variant mentioned by Térn and Zilinskas
(1989), pp. 185) is used here in order to test adaptive
mutation rates for a complicated problem.

A modified version of Grefenstette’s (1987) GA-
implementation (GENESIS is used to obtain the experi-
mental results, and general settings for each run of the
GA are:

e Population size A = 50.

e Length of the object variable encoding part of
an individual { = 32n (n being the dimension of
the objective function®).

5The index choice for objective functions is founded on the
historical development of our implementation as well as the at-
tempt to keep in correspondence with De Jongs (1975) nomen-
clature f1—fs.

6A length of 32 bits per object variable is used for the

e Crossover rate p, = 0.6.

e Two—point crossover, working only on the geno-
type encoding of the object variables.

e Gray code.

For adaptive mutation a length I = 20 was chosen
to allow sufficiently many different mutation rates to
be encoded by the string. For each objective function
a reference GA with (50,50)-proportional selection and
a constant, external mutation rate p,, = 0.001 is com-
pared to the following variants:

-proportional selection, 1 adaptive muta-
(1) (50,50)-proportional selection, 1 adapti t
tion rate.

(2) (50,50)-proportional selection, n adaptive muta-
tion rates.

(3) (10,50)-proportional selection, no adaptive mu-
tation (pn,, = 0.001).

(4) (10,50)-proportional selection, 1 adaptive muta-
tion rate.

(5) (10,50)-proportional selection, n adaptive muta-
tion rates.

The setting of u/A = 1/5 for the extinctive selec-
tion variants stems from theoretical results derived by
Schwefel (1981) concerning the convergence velocity of
ESs for the sphere and corridor model, and first ex-
periments by Béick and Hoffmeister (1991) indicated
to use it even in the field of GAs. The experimen-
tal results are compared by looking at the best values
per generation, which are averaged over 10 runs of
the algorithm. In figures (2)—(4) the resulting graphs
are shown for fi, fis, and f7, respectively. The plots
are labeled by their numbers given in the enumeration
above, the reference GA being labeled with (0).

First we will look at the combination of preser-
vative selection and adaptive mutation, i.e. cases (1)
and (2). For the unimodal functions (figures 2 and 3)
performance decreases as the amount of additional in-
formation increases, while for the multimodal function
(figure 4) one mutation rate (1) converges to a bet-
ter local optimum than the reference GA, and n mu-
tation rates (2) improve slowly but steadily, possibly
being better than (0) and (1) on the long run. Thus,
without changing the selection mechanism the large
amount of additional information is disadvantageous

representation of the real interval [a,b] to which the bit-
strings are mapped, in order to achieve a maximum resolution
Az = (b—a)/(2%2 — 1) of the search grid.



| Name | Description | Dim. | Characteristics | Ref. |

f1 sphere model n = 30 | unimodal, De Jong (1975)
IGED T high—dimensional | Schwefel (1981)
—5.12<2; <5.12

fis | weighted sphere model n = 30 | unimodal, Schwefel (1988)
fis(Z) =50 i -2} high—dimensional
—5.12<2; <5.12

fr generalized Rastrigin’s n = 20 | multimodal, Torn and
function high—-dimensional, | Zilinskas (1989)
f7(&)=nA+ " 27 — Acos(wz;) J1 with sine
A=10;w=27;-5.12<z; < 5.12 wave superposition

Table 1: The set of test functions

for unimodal and of slight advantage for multimodal
topologies.

When introducing extinctive selection (3) alone,
the behaviour is contrary. On unimodal functions
performance increases remarkably, while on the mul-
timodal function extinctive selection does not change
performance when compared to the reference GA.

In any case the GA remarkably benefits from the
combination of adaptive mutation and extinctive selec-
tion, although it accomplishes this behaviour in differ-
ent combinations with respect to the number of muta-
tion rates. The unimodal functions are better suited
for search with extinctive selection and only one mu-
tation rate (4) than n rates (5), while for the multi-
modal function one mutation rate quickly converges to
a local optimum and n mutation rates lead to the best
solution with a population not yet converged after 500
generations.

However, these results for unimodal functions are
contradicting to those obtained by Schwefel (1988) for
self-adaptation of mutation rates in an ES. For f;
and fi5 he found remarkably better behaviour for vari-
ants using a combination of individual step sizes and
recombination than for variants using only one step
size. This synergetic effect is mainly caused by the
recombination of mutation rates, which supports the
emergence of actually better suited combinations of
mutation rates. To prevent the mechanism from re-
ducing the search space by a mutation rate which be-
comes zero, in ESs Schwefel (1981) uses an additional
exogeneous multiplication factor for all standard de-
viations of an individual. By using a log-normal dis-
tribution for this factor its expectation is 1 and the
occurrence probability of a multiplication factor r is
equal to that of a factor 1/r, thus a subspace search
is prevented by such a mechanism.

The GA-behaviour found in these experiments is a
clear confirmation of the well-known contradiction be-
tween exploration and exploitation in global optimiza-
tion. For unimodal surfaces a path oriented, exploita-
tive search with a high convergence velocity is desired,
while for multimodal surfaces the search should be vol-
ume oriented, explorative with a high convergence con-
fidence towards a global optimum point. Both prop-
erty classes are contradicting, one can not have them
at the same time.

Applied to the results given here, only one adap-
tive mutation rate seems to serve as a local hillclimb-
ing mechanism when combined with extinctive selec-
tion. On the other hand, a high degree of exploration
is achieved when all object variables are mutated in-
dependently, thus serving as a powerful global explo-
ration mechanism when combined with a strong em-
phasis on survival of the fitter individuals to prevent
the algorithm from converging too slow.

In case (4) of one adaptive mutation rate figure 5
gives an impression of the course of the average mu-
tation rate over time. Two facts are interesting to
note:

e For extinctive selection average mutation rates
are almost a factor of 10 larger than for preser-
vative selection.

e There is no difference in the average mutation
rates between the multimodal and the unimodal
functions.

From these observations we can conclude that the
algorithm balances well between a mutation rate as
high as needed for efficient search and as high as possi-
ble without destroying useful information, thus work-
ing on the borderline of efficient optimization and al-
most random walk.
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Understanding the mutation rates of figure 5 as
optimal ones, we can compare them to the results ob-
tained by Schaffer’s empirical expression (1), which
are

¢ py = 0.0011 for f; and fi5 (A = 50, I = 960),
o pm = 0.0014 for fr (A = 50, [ = 640).

Unfortunately the results can not be compared di-
rectly due to the fact that the mutation rates used here
are probabilities for sampling a bit position instead of
inverting it, and Schaffer et al. do not explain which
kind of mutation they use. However, at the most our
mutation rates would double, increasing the gap be-
tween the results.
hypothesis 1:

We can conclude by formulating

HyPOTHESIS 1

An optimal mutation rate for a GA is relatively large
and turns mutation into an additional search operator.
When used in combination with extinctive selection,
it considerably improves the performance of a GA.

Concerning the GA this hypothesis is a daring one.
Holland (1975, pp. 110-111) has explicitly stressed the
role of mutation as a “background operator”, operating
as a mechanism to reintroduce lost alleles, but not as a
search operator. On the other hand, Eigen (1976) has

demonstrated that for more general models of evolving
systems on the level of organic macromolecules evolu-
tion works most efficient when mutation rates are di-
rectly below the threshold value above which informa-
tion is destroyed. Although the investigations of Eigen
do not take recombination into account, they are the-
oretically well-founded and provide a strong argument
for enlarging the role of mutation even in the artificial
evolving systems we are dealing with.

Summary

Within this work it is confirmed that under the con-
dition of an extinctive selection mechanism second-
level learning of mutation rates is possible and advan-
tageous even in GAs. For a multimodal function n
mutation rates per individual perform well, while for
unimodal functions one mutation rate per individual
performs well. In any case at least a combination of
one adaptive mutation rate per individual and extinc-
tive selection is better than the reference GA. This
is a strong argument for the general introduction of
adaptive mutation rates to GAs, which would also
eliminate a part of the parameterisation problem of
GAs. However some questions haven’t been answered
yet, especially concerning recombination of mutation
rates, which has shown by Schwefel (1988) to be an
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essential condition” for self-adaptation in ESs. Surely,
new recombination techniques have to be used for n
mutation rates, while for one mutation rate traditional
crossover could be used.

In addition the influence of different extinctive se-
lection mechanisms, especially those which are rank-
based, as well as the influence of the ratio u/}, i.e. the
degree of extinctiveness, should be investigated fur-
ther.

Appendix: Proof of theorem 1

The proof of theorem 1 is based upon equation (9) for
calculating the n-step transition probabilities of the
markov chain:

Pa—»(OMO) (n)
2lm _1

= Z Pa—»bin(r) (m) Pbin(r)—»(OMO) (n - m)
r=0

7 Another essential condition for self-adaptation in ESs is
the possibility to forget good information. Schwefel (1988) has
demonstrated that for this reason self-adaptation does not work
in a (u+A)-ES, which allows arbitrarily long survival of individ-
uals. A standard GA without the generation gap by Grefen-
stette (1986) always allows to die even for the best individual,
hence we do not discuss this topic here in detail for GAs.

2tm -1
= Z Pa—»bin(r) (TL - l) Pbin(r)—»(OmO) (1)

r=0
form=n-1
= Pa—»(OMO) (n - 1) P(omo)—»(omo) (1)
alm 1
+ Z Po—pintr) (n = 1) Pyin(ry—(0...0) (1)

r=1
= Pa—»(OMO) (n - 1)
2tm 1

+ Z Pa—pintr) (n = 1) Pyin(ry—(0...0) (1)

r=1

> Pa—»(OMO) (n - 1)

Hence, P,_(o..0) increases monotonously over time.

lm_
Since Zf:o ! Po—pin(ry(n) = land Py (0..0y(n) < 1,
either

alm _1
> Pabingry (n = 1) Prin(ry—(0..0) (1) > 0

r=1

or
Po_o.oy(n—1)=1

must be valid (Ppin(r)—(0..0) (1) = Pbin(r)—(0..0) # 0

iff » # 0), hence either the probability of a tran-

sition to zero increases strictly, i.e. Pa—>(0...0:) (n) >

Pa-»(o,,,o) (TL - 1)1 or Pa—»(o...o) (n) =1. qed.
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